Mister Exam

Integral of e^xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1        
  /        
 |         
 |   x     
 |  e *1 dx
 |         
/          
0          
01ex1dx\int\limits_{0}^{1} e^{x} 1\, dx
Integral(E^x*1, (x, 0, 1))
Detail solution
  1. Let u=exu = e^{x}.

    Then let du=exdxdu = e^{x} dx and substitute dudu:

    1du\int 1\, du

    1. The integral of a constant is the constant times the variable of integration:

      1du=u\int 1\, du = u

    Now substitute uu back in:

    exe^{x}

  2. Now simplify:

    exe^{x}

  3. Add the constant of integration:

    ex+constante^{x}+ \mathrm{constant}


The answer is:

ex+constante^{x}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                
 |                 
 |  x             x
 | e *1 dx = C + e 
 |                 
/                  
exe^{x}
The graph
0.001.000.100.200.300.400.500.600.700.800.9004
The answer [src]
-1 + e
e1e-1
=
=
-1 + e
1+e-1 + e
Numerical answer [src]
1.71828182845905
1.71828182845905
The graph
Integral of e^xdx dx

    Use the examples entering the upper and lower limits of integration.