Integral of -0,1/e^xdx dx
The solution
Detail solution
-
The integral of a constant times a function is the constant times the integral of the function:
∫((−101)ex11)dx=−10∫ex1dx
-
Let u=ex.
Then let du=exdx and substitute du:
∫u21du
-
The integral of un is n+1un+1 when n=−1:
∫u21du=−u1
Now substitute u back in:
So, the result is: 10e−x
-
Add the constant of integration:
10e−x+constant
The answer is:
10e−x+constant
The answer (Indefinite)
[src]
/
| -x
| 1 e
| -1/10*--*1 dx = C + ---
| x 10
| e
|
/
10e−x
The graph
-2/5 -11/5
e e
- ----- + ------
10 10
−10e−52−e−511
=
-2/5 -11/5
e e
- ----- + ------
10 10
−10e521+10e5111
Use the examples entering the upper and lower limits of integration.