Mister Exam

Other calculators


-0,1/e^xdx

Integral of -0,1/e^xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 11/5             
   /              
  |               
  |        1      
  |  -1/10*--*1 dx
  |         x     
  |        e      
  |               
 /                
 2/5              
$$\int\limits_{\frac{2}{5}}^{\frac{11}{5}} \left(\left(- \frac{1}{10}\right) \frac{1}{e^{x}} 1\right)\, dx$$
Integral(-1/10*1/E^x, (x, 2/5, 11/5))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    1. Let .

      Then let and substitute :

      1. The integral of is when :

      Now substitute back in:

    So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       
 |                      -x
 |       1             e  
 | -1/10*--*1 dx = C + ---
 |        x             10
 |       e                
 |                        
/                         
$${{e^ {- x }}\over{10}}$$
The graph
The answer [src]
   -2/5    -11/5
  e       e     
- ----- + ------
    10      10  
$$-{{e^ {- {{2}\over{5}} }-e^ {- {{11}\over{5}} }}\over{10}}$$
=
=
   -2/5    -11/5
  e       e     
- ----- + ------
    10      10  
$$- \frac{1}{10 e^{\frac{2}{5}}} + \frac{1}{10 e^{\frac{11}{5}}}$$
Numerical answer [src]
-0.0559516887673305
-0.0559516887673305
The graph
Integral of -0,1/e^xdx dx

    Use the examples entering the upper and lower limits of integration.