Apply the quotient rule, which is:
and .
To find :
The derivative of is itself.
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is itself.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
x 2*x e e ------ - --------- x 2 1 + E / x\ \1 + E /
/ / x \ \ | | 2*e | x| | |1 - ------|*e | | x | x| | | 2*e \ 1 + e / | x |1 - ------ - ---------------|*e | x x | \ 1 + e 1 + e / --------------------------------- x 1 + e
/ / x 2*x \ \ | | 6*e 6*e | x / x \ | | |1 - ------ + ---------|*e | 2*e | x| | | x 2| 3*|1 - ------|*e | | x | 1 + e / x\ | | x| | | 3*e \ \1 + e / / \ 1 + e / | x |1 - ------ - --------------------------- - -----------------|*e | x x x | \ 1 + e 1 + e 1 + e / ----------------------------------------------------------------- x 1 + e