Apply the quotient rule, which is:
and .
To find :
The derivative of is itself.
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of is itself.
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
x 2*x
e e
------ - ---------
x 2
1 + E / x\
\1 + E /
/ / x \ \
| | 2*e | x|
| |1 - ------|*e |
| x | x| |
| 2*e \ 1 + e / | x
|1 - ------ - ---------------|*e
| x x |
\ 1 + e 1 + e /
---------------------------------
x
1 + e
/ / x 2*x \ \
| | 6*e 6*e | x / x \ |
| |1 - ------ + ---------|*e | 2*e | x|
| | x 2| 3*|1 - ------|*e |
| x | 1 + e / x\ | | x| |
| 3*e \ \1 + e / / \ 1 + e / | x
|1 - ------ - --------------------------- - -----------------|*e
| x x x |
\ 1 + e 1 + e 1 + e /
-----------------------------------------------------------------
x
1 + e