Mister Exam

Integral of e^(-3x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |   -3*x   
 |  E     dx
 |          
/           
0           
01e3xdx\int\limits_{0}^{1} e^{- 3 x}\, dx
Integral(E^(-3*x), (x, 0, 1))
Detail solution
  1. Let u=3xu = - 3 x.

    Then let du=3dxdu = - 3 dx and substitute du3- \frac{du}{3}:

    (eu3)du\int \left(- \frac{e^{u}}{3}\right)\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      False\text{False}

      1. The integral of the exponential function is itself.

        eudu=eu\int e^{u}\, du = e^{u}

      So, the result is: eu3- \frac{e^{u}}{3}

    Now substitute uu back in:

    e3x3- \frac{e^{- 3 x}}{3}

  2. Add the constant of integration:

    e3x3+constant- \frac{e^{- 3 x}}{3}+ \mathrm{constant}


The answer is:

e3x3+constant- \frac{e^{- 3 x}}{3}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                    
 |                 -3*x
 |  -3*x          e    
 | E     dx = C - -----
 |                  3  
/                      
e3xdx=Ce3x3\int e^{- 3 x}\, dx = C - \frac{e^{- 3 x}}{3}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-1
The answer [src]
     -3
1   e  
- - ---
3    3 
1313e3\frac{1}{3} - \frac{1}{3 e^{3}}
=
=
     -3
1   e  
- - ---
3    3 
1313e3\frac{1}{3} - \frac{1}{3 e^{3}}
1/3 - exp(-3)/3
Numerical answer [src]
0.316737643877379
0.316737643877379
The graph
Integral of e^(-3x) dx

    Use the examples entering the upper and lower limits of integration.