Integral of e^(-2x)sinx dx
The solution
The answer (Indefinite)
[src]
/
| -2*x -2*x
| -2*x 2*e *sin(x) cos(x)*e
| E *sin(x) dx = C - -------------- - ------------
| 5 5
/
∫e−2xsin(x)dx=C−52e−2xsin(x)−5e−2xcos(x)
The graph
-2 -2
1 2*e *sin(1) cos(1)*e
- - ------------ - ----------
5 5 5
−5e22sin(1)−5e2cos(1)+51
=
-2 -2
1 2*e *sin(1) cos(1)*e
- - ------------ - ----------
5 5 5
−5e22sin(1)−5e2cos(1)+51
1/5 - 2*exp(-2)*sin(1)/5 - cos(1)*exp(-2)/5
Use the examples entering the upper and lower limits of integration.