Mister Exam

Other calculators


xcos(3x^2+2)

Integral of xcos(3x^2+2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       /   2    \   
 |  x*cos\3*x  + 2/ dx
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \cos{\left(3 x^{2} + 2 \right)}\, dx$$
Integral(x*cos(3*x^2 + 2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                      
 |                             /   2    \
 |      /   2    \          sin\3*x  + 2/
 | x*cos\3*x  + 2/ dx = C + -------------
 |                                6      
/                                        
$$\int x \cos{\left(3 x^{2} + 2 \right)}\, dx = C + \frac{\sin{\left(3 x^{2} + 2 \right)}}{6}$$
The graph
The answer [src]
  sin(2)   sin(5)
- ------ + ------
    6        6   
$$\frac{\sin{\left(5 \right)}}{6} - \frac{\sin{\left(2 \right)}}{6}$$
=
=
  sin(2)   sin(5)
- ------ + ------
    6        6   
$$\frac{\sin{\left(5 \right)}}{6} - \frac{\sin{\left(2 \right)}}{6}$$
-sin(2)/6 + sin(5)/6
Numerical answer [src]
-0.31137028358147
-0.31137028358147
The graph
Integral of xcos(3x^2+2) dx

    Use the examples entering the upper and lower limits of integration.