Mister Exam

Other calculators


e^(x^3)

Integral of e^(x^3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1         
  /         
 |          
 |   / 3\   
 |   \x /   
 |  E     dx
 |          
/           
0           
$$\int\limits_{0}^{1} e^{x^{3}}\, dx$$
Integral(E^(x^3), (x, 0, 1))
The answer (Indefinite) [src]
  /                -pi*I                                      
 |                 ------                                     
 |  / 3\             3                         /      3  pi*I\
 |  \x /          e      *Gamma(1/3)*lowergamma\1/3, x *e    /
 | E     dx = C + --------------------------------------------
 |                                9*Gamma(4/3)                
/                                                             
$$\int e^{x^{3}}\, dx = C + \frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, x^{3} e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
The graph
The answer [src]
 -pi*I                                   
 ------                                  
   3                         /      pi*I\
e      *Gamma(1/3)*lowergamma\1/3, e    /
-----------------------------------------
               9*Gamma(4/3)              
$$\frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
=
=
 -pi*I                                   
 ------                                  
   3                         /      pi*I\
e      *Gamma(1/3)*lowergamma\1/3, e    /
-----------------------------------------
               9*Gamma(4/3)              
$$\frac{e^{- \frac{i \pi}{3}} \Gamma\left(\frac{1}{3}\right) \gamma\left(\frac{1}{3}, e^{i \pi}\right)}{9 \Gamma\left(\frac{4}{3}\right)}$$
exp(-pi*i/3)*gamma(1/3)*lowergamma(1/3, exp_polar(pi*i))/(9*gamma(4/3))
Numerical answer [src]
1.34190441797742
1.34190441797742
The graph
Integral of e^(x^3) dx

    Use the examples entering the upper and lower limits of integration.