Integral of e^(5x-7)*dx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Let u=5x−7.
Then let du=5dx and substitute 5du:
∫5eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 5eu
Now substitute u back in:
5e5x−7
Method #2
-
Rewrite the integrand:
e5x−7=e7e5x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e5xdx=e7∫e5xdx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 5eu
Now substitute u back in:
5e5x
So, the result is: 5e7e5x
Method #3
-
Rewrite the integrand:
e5x−7=e7e5x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e5xdx=e7∫e5xdx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫5eudu
-
The integral of a constant times a function is the constant times the integral of the function:
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 5eu
Now substitute u back in:
5e5x
So, the result is: 5e7e5x
-
Now simplify:
5e5x−7
-
Add the constant of integration:
5e5x−7+constant
The answer is:
5e5x−7+constant
The answer (Indefinite)
[src]
/
| 5*x - 7
| 5*x - 7 e
| E dx = C + --------
| 5
/
∫e5x−7dx=C+5e5x−7
The graph
Use the examples entering the upper and lower limits of integration.