Mister Exam

Other calculators

Integral of e^(5x-7)*dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0            
  /            
 |             
 |   5*x - 7   
 |  E        dx
 |             
/              
0              
00e5x7dx\int\limits_{0}^{0} e^{5 x - 7}\, dx
Integral(E^(5*x - 7), (x, 0, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let u=5x7u = 5 x - 7.

      Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

      eu5du\int \frac{e^{u}}{5}\, du

      1. The integral of a constant times a function is the constant times the integral of the function:

        False\text{False}

        1. The integral of the exponential function is itself.

          eudu=eu\int e^{u}\, du = e^{u}

        So, the result is: eu5\frac{e^{u}}{5}

      Now substitute uu back in:

      e5x75\frac{e^{5 x - 7}}{5}

    Method #2

    1. Rewrite the integrand:

      e5x7=e5xe7e^{5 x - 7} = \frac{e^{5 x}}{e^{7}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e5xe7dx=e5xdxe7\int \frac{e^{5 x}}{e^{7}}\, dx = \frac{\int e^{5 x}\, dx}{e^{7}}

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        eu5du\int \frac{e^{u}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu5\frac{e^{u}}{5}

        Now substitute uu back in:

        e5x5\frac{e^{5 x}}{5}

      So, the result is: e5x5e7\frac{e^{5 x}}{5 e^{7}}

    Method #3

    1. Rewrite the integrand:

      e5x7=e5xe7e^{5 x - 7} = \frac{e^{5 x}}{e^{7}}

    2. The integral of a constant times a function is the constant times the integral of the function:

      e5xe7dx=e5xdxe7\int \frac{e^{5 x}}{e^{7}}\, dx = \frac{\int e^{5 x}\, dx}{e^{7}}

      1. Let u=5xu = 5 x.

        Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

        eu5du\int \frac{e^{u}}{5}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          False\text{False}

          1. The integral of the exponential function is itself.

            eudu=eu\int e^{u}\, du = e^{u}

          So, the result is: eu5\frac{e^{u}}{5}

        Now substitute uu back in:

        e5x5\frac{e^{5 x}}{5}

      So, the result is: e5x5e7\frac{e^{5 x}}{5 e^{7}}

  2. Now simplify:

    e5x75\frac{e^{5 x - 7}}{5}

  3. Add the constant of integration:

    e5x75+constant\frac{e^{5 x - 7}}{5}+ \mathrm{constant}


The answer is:

e5x75+constant\frac{e^{5 x - 7}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                          
 |                    5*x - 7
 |  5*x - 7          e       
 | E        dx = C + --------
 |                      5    
/                            
e5x7dx=C+e5x75\int e^{5 x - 7}\, dx = C + \frac{e^{5 x - 7}}{5}
The graph
0.001.000.100.200.300.400.500.600.700.800.900.00000.0010
The answer [src]
0
00
=
=
0
00
0
Numerical answer [src]
0.0
0.0

    Use the examples entering the upper and lower limits of integration.