Integral of e^(5x+7)*dx dx
The solution
Detail solution
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
e5x+7⋅1=e7e5x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e5xdx=e7∫e5xdx
-
There are multiple ways to do this integral.
Method #1
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫5eudu=5∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 5eu
Now substitute u back in:
5e5x
Method #2
-
Let u=e5x.
Then let du=5e5xdx and substitute 5du:
∫251du
-
The integral of a constant times a function is the constant times the integral of the function:
∫51du=5∫1du
-
The integral of a constant is the constant times the variable of integration:
∫1du=u
So, the result is: 5u
Now substitute u back in:
5e5x
So, the result is: 5e7e5x
Method #2
-
Rewrite the integrand:
e5x+7⋅1=e7e5x
-
The integral of a constant times a function is the constant times the integral of the function:
∫e7e5xdx=e7∫e5xdx
-
Let u=5x.
Then let du=5dx and substitute 5du:
∫25eudu
-
The integral of a constant times a function is the constant times the integral of the function:
∫5eudu=5∫eudu
-
The integral of the exponential function is itself.
∫eudu=eu
So, the result is: 5eu
Now substitute u back in:
5e5x
So, the result is: 5e7e5x
-
Now simplify:
5e5x+7
-
Add the constant of integration:
5e5x+7+constant
The answer is:
5e5x+7+constant
The answer (Indefinite)
[src]
/
| 7 5*x
| 5*x + 7 e *e
| e *1 dx = C + -------
| 5
/
5e5x+7
The graph
5e12−5e7
=
−5e7+5e12
Use the examples entering the upper and lower limits of integration.