Mister Exam

Other calculators

Integral of dx/(x^4+1) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   ___         
 \/ 3          
   /           
  |            
  |     1      
  |   ------ dx
  |    4       
  |   x  + 1   
  |            
 /             
  ___          
\/ 3           
-----          
  3            
$$\int\limits_{\frac{\sqrt{3}}{3}}^{\sqrt{3}} \frac{1}{x^{4} + 1}\, dx$$
Integral(1/(x^4 + 1), (x, sqrt(3)/3, sqrt(3)))
The answer (Indefinite) [src]
  /                                                                                                                              
 |                   ___    /     2       ___\     ___     /        ___\     ___     /         ___\     ___    /     2       ___\
 |   1             \/ 2 *log\1 + x  - x*\/ 2 /   \/ 2 *atan\1 + x*\/ 2 /   \/ 2 *atan\-1 + x*\/ 2 /   \/ 2 *log\1 + x  + x*\/ 2 /
 | ------ dx = C - --------------------------- + ----------------------- + ------------------------ + ---------------------------
 |  4                           8                           4                         4                            8             
 | x  + 1                                                                                                                        
 |                                                                                                                               
/                                                                                                                                
$$\int \frac{1}{x^{4} + 1}\, dx = C - \frac{\sqrt{2} \log{\left(x^{2} - \sqrt{2} x + 1 \right)}}{8} + \frac{\sqrt{2} \log{\left(x^{2} + \sqrt{2} x + 1 \right)}}{8} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} x - 1 \right)}}{4} + \frac{\sqrt{2} \operatorname{atan}{\left(\sqrt{2} x + 1 \right)}}{4}$$
The graph
The answer [src]
                                    /      ___\                                   /      ___\                                     /      ___\                                   /      ___\
                            ___     |    \/ 6 |                            ___    |4   \/ 6 |                             ___     |    \/ 6 |                            ___    |4   \/ 6 |
    ___     /      ___\   \/ 2 *atan|1 + -----|     ___    /      ___\   \/ 2 *log|- + -----|     ___     /      ___\   \/ 2 *atan|1 - -----|     ___    /      ___\   \/ 2 *log|- - -----|
  \/ 2 *atan\1 - \/ 6 /             \      3  /   \/ 2 *log\4 - \/ 6 /            \3     3  /   \/ 2 *atan\1 + \/ 6 /             \      3  /   \/ 2 *log\4 + \/ 6 /            \3     3  /
- --------------------- - --------------------- - -------------------- - -------------------- + --------------------- + --------------------- + -------------------- + --------------------
            4                       4                      8                      8                       4                       4                      8                      8          
$$- \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{6}}{3} + 1 \right)}}{4} - \frac{\sqrt{2} \log{\left(\frac{\sqrt{6}}{3} + \frac{4}{3} \right)}}{8} + \frac{\sqrt{2} \log{\left(\frac{4}{3} - \frac{\sqrt{6}}{3} \right)}}{8} - \frac{\sqrt{2} \log{\left(4 - \sqrt{6} \right)}}{8} + \frac{\sqrt{2} \operatorname{atan}{\left(1 - \frac{\sqrt{6}}{3} \right)}}{4} + \frac{\sqrt{2} \log{\left(\sqrt{6} + 4 \right)}}{8} - \frac{\sqrt{2} \operatorname{atan}{\left(1 - \sqrt{6} \right)}}{4} + \frac{\sqrt{2} \operatorname{atan}{\left(1 + \sqrt{6} \right)}}{4}$$
=
=
                                    /      ___\                                   /      ___\                                     /      ___\                                   /      ___\
                            ___     |    \/ 6 |                            ___    |4   \/ 6 |                             ___     |    \/ 6 |                            ___    |4   \/ 6 |
    ___     /      ___\   \/ 2 *atan|1 + -----|     ___    /      ___\   \/ 2 *log|- + -----|     ___     /      ___\   \/ 2 *atan|1 - -----|     ___    /      ___\   \/ 2 *log|- - -----|
  \/ 2 *atan\1 - \/ 6 /             \      3  /   \/ 2 *log\4 - \/ 6 /            \3     3  /   \/ 2 *atan\1 + \/ 6 /             \      3  /   \/ 2 *log\4 + \/ 6 /            \3     3  /
- --------------------- - --------------------- - -------------------- - -------------------- + --------------------- + --------------------- + -------------------- + --------------------
            4                       4                      8                      8                       4                       4                      8                      8          
$$- \frac{\sqrt{2} \operatorname{atan}{\left(\frac{\sqrt{6}}{3} + 1 \right)}}{4} - \frac{\sqrt{2} \log{\left(\frac{\sqrt{6}}{3} + \frac{4}{3} \right)}}{8} + \frac{\sqrt{2} \log{\left(\frac{4}{3} - \frac{\sqrt{6}}{3} \right)}}{8} - \frac{\sqrt{2} \log{\left(4 - \sqrt{6} \right)}}{8} + \frac{\sqrt{2} \operatorname{atan}{\left(1 - \frac{\sqrt{6}}{3} \right)}}{4} + \frac{\sqrt{2} \log{\left(\sqrt{6} + 4 \right)}}{8} - \frac{\sqrt{2} \operatorname{atan}{\left(1 - \sqrt{6} \right)}}{4} + \frac{\sqrt{2} \operatorname{atan}{\left(1 + \sqrt{6} \right)}}{4}$$
-sqrt(2)*atan(1 - sqrt(6))/4 - sqrt(2)*atan(1 + sqrt(6)/3)/4 - sqrt(2)*log(4 - sqrt(6))/8 - sqrt(2)*log(4/3 + sqrt(6)/3)/8 + sqrt(2)*atan(1 + sqrt(6))/4 + sqrt(2)*atan(1 - sqrt(6)/3)/4 + sqrt(2)*log(4 + sqrt(6))/8 + sqrt(2)*log(4/3 - sqrt(6)/3)/8
Numerical answer [src]
0.484169591651562
0.484169591651562

    Use the examples entering the upper and lower limits of integration.