1 / | | -x | E *cos(3*x) dx | / 0
Integral(E^(-x)*cos(3*x), (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Use integration by parts, noting that the integrand eventually repeats itself.
For the integrand :
Let and let .
Then .
For the integrand :
Let and let .
Then .
Notice that the integrand has repeated itself, so move it to one side:
Therefore,
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | -x -x | -x cos(3*x)*e 3*e *sin(3*x) | E *cos(3*x) dx = C - ------------ + -------------- | 10 10 /
-1 -1 1 cos(3)*e 3*e *sin(3) -- - ---------- + ------------ 10 10 10
=
-1 -1 1 cos(3)*e 3*e *sin(3) -- - ---------- + ------------ 10 10 10
1/10 - cos(3)*exp(-1)/10 + 3*exp(-1)*sin(3)/10
Use the examples entering the upper and lower limits of integration.