Mister Exam

Other calculators

Integral of dx/(x²+4x+3) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |       1         
 |  ------------ dx
 |   2             
 |  x  + 4*x + 3   
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \frac{1}{\left(x^{2} + 4 x\right) + 3}\, dx$$
Integral(1/(x^2 + 4*x + 3), (x, 0, 1))
The answer (Indefinite) [src]
  /                                             
 |                                              
 |      1                log(1 + x)   log(3 + x)
 | ------------ dx = C + ---------- - ----------
 |  2                        2            2     
 | x  + 4*x + 3                                 
 |                                              
/                                               
$$\int \frac{1}{\left(x^{2} + 4 x\right) + 3}\, dx = C + \frac{\log{\left(x + 1 \right)}}{2} - \frac{\log{\left(x + 3 \right)}}{2}$$
The graph
The answer [src]
log(2)   log(3)   log(4)
------ + ------ - ------
  2        2        2   
$$- \frac{\log{\left(4 \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + \frac{\log{\left(3 \right)}}{2}$$
=
=
log(2)   log(3)   log(4)
------ + ------ - ------
  2        2        2   
$$- \frac{\log{\left(4 \right)}}{2} + \frac{\log{\left(2 \right)}}{2} + \frac{\log{\left(3 \right)}}{2}$$
log(2)/2 + log(3)/2 - log(4)/2
Numerical answer [src]
0.202732554054082
0.202732554054082

    Use the examples entering the upper and lower limits of integration.