Mister Exam

Other calculators


dx/sqrt(1-16x^2)dx

You entered:

dx/sqrt(1-16x^2)dx

What you mean?

Integral of dx/sqrt(1-16x^2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                      
  /                      
 |                       
 |          1            
 |  1*--------------*1 dx
 |       ___________     
 |      /         2      
 |    \/  1 - 16*x       
 |                       
/                        
1/4                      
1401116x2+11dx\int\limits_{\frac{1}{4}}^{0} 1 \cdot \frac{1}{\sqrt{- 16 x^{2} + 1}} \cdot 1\, dx
Detail solution

    TrigSubstitutionRule(theta=_theta, func=sin(_theta)/4, rewritten=1/4, substep=ConstantRule(constant=1/4, context=1/4, symbol=_theta), restriction=(x > -1/4) & (x < 1/4), context=1*1/sqrt(1 - 16*x**2), symbol=x)

  1. Now simplify:

    {asin(4x)4forx>14x<14NaNotherwise\begin{cases} \frac{\operatorname{asin}{\left(4 x \right)}}{4} & \text{for}\: x > - \frac{1}{4} \wedge x < \frac{1}{4} \\\text{NaN} & \text{otherwise} \end{cases}

  2. Add the constant of integration:

    {asin(4x)4forx>14x<14NaNotherwise+constant\begin{cases} \frac{\operatorname{asin}{\left(4 x \right)}}{4} & \text{for}\: x > - \frac{1}{4} \wedge x < \frac{1}{4} \\\text{NaN} & \text{otherwise} \end{cases}+ \mathrm{constant}


The answer is:

{asin(4x)4forx>14x<14NaNotherwise+constant\begin{cases} \frac{\operatorname{asin}{\left(4 x \right)}}{4} & \text{for}\: x > - \frac{1}{4} \wedge x < \frac{1}{4} \\\text{NaN} & \text{otherwise} \end{cases}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                                                    
 |                                                                     
 |         1                   //asin(4*x)                            \
 | 1*--------------*1 dx = C + |<---------  for And(x > -1/4, x < 1/4)|
 |      ___________            \\    4                                /
 |     /         2                                                     
 |   \/  1 - 16*x                                                      
 |                                                                     
/                                                                      
arcsin(4x)4{{\arcsin \left(4\,x\right)}\over{4}}
The graph
0.0000.2500.0250.0500.0750.1000.1250.1500.1750.2000.2250100
The answer [src]
-pi 
----
 8  
π8-{{\pi}\over{8}}
=
=
-pi 
----
 8  
π8- \frac{\pi}{8}
Numerical answer [src]
-0.392699081604947
-0.392699081604947
The graph
Integral of dx/sqrt(1-16x^2)dx dx

    Use the examples entering the upper and lower limits of integration.