Integral of sin^6xcos^4x dx
The solution
Detail solution
-
Rewrite the integrand:
sin6(x)cos4(x)=(21−2cos(2x))3(2cos(2x)+21)2
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(21−2cos(2x))3(2cos(2x)+21)2=−32cos5(2x)+32cos4(2x)+16cos3(2x)−16cos2(2x)−32cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos5(2x))dx=−32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −320sin5(2x)+96sin3(2x)−64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫32cos4(2x)dx=32∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
There are multiple ways to do this integral.
Method #1
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
Method #2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 2563x+256sin(4x)+2048sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos3(2x)dx=16∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −96sin3(2x)+32sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−16cos2(2x))dx=−16∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: −32x−128sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos(2x))dx=−32∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −64sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 2563x−320sin5(2x)−256sin(4x)+2048sin(8x)
Method #2
-
Rewrite the integrand:
(21−2cos(2x))3(2cos(2x)+21)2=−32cos5(2x)+32cos4(2x)+16cos3(2x)−16cos2(2x)−32cos(2x)+321
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos5(2x))dx=−32∫cos5(2x)dx
-
Rewrite the integrand:
cos5(2x)=(1−sin2(2x))2cos(2x)
-
Let u=2x.
Then let du=2dx and substitute du:
∫(2sin4(u)cos(u)−sin2(u)cos(u)+2cos(u))du
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2sin4(u)cos(u)du=2∫sin4(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u4du
-
The integral of un is n+1un+1 when n=−1:
∫u4du=5u5
Now substitute u back in:
5sin5(u)
So, the result is: 10sin5(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−sin2(u)cos(u))du=−∫sin2(u)cos(u)du
-
Let u=sin(u).
Then let du=cos(u)du and substitute du:
∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
Now substitute u back in:
3sin3(u)
So, the result is: −3sin3(u)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
The result is: 10sin5(u)−3sin3(u)+2sin(u)
Now substitute u back in:
10sin5(2x)−3sin3(2x)+2sin(2x)
So, the result is: −320sin5(2x)+96sin3(2x)−64sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫32cos4(2x)dx=32∫cos4(2x)dx
-
Rewrite the integrand:
cos4(2x)=(2cos(4x)+21)2
-
Rewrite the integrand:
(2cos(4x)+21)2=4cos2(4x)+2cos(4x)+41
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos2(4x)dx=4∫cos2(4x)dx
-
Rewrite the integrand:
cos2(4x)=2cos(8x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(8x)dx=2∫cos(8x)dx
-
Let u=8x.
Then let du=8dx and substitute 8du:
∫64cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫8cos(u)du=8∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 8sin(u)
Now substitute u back in:
8sin(8x)
So, the result is: 16sin(8x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+16sin(8x)
So, the result is: 8x+64sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫41dx=4x
The result is: 83x+8sin(4x)+64sin(8x)
So, the result is: 2563x+256sin(4x)+2048sin(8x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫16cos3(2x)dx=16∫cos3(2x)dx
-
Rewrite the integrand:
cos3(2x)=(1−sin2(2x))cos(2x)
-
Let u=sin(2x).
Then let du=2cos(2x)dx and substitute du:
∫(21−2u2)du
-
Integrate term-by-term:
-
The integral of a constant is the constant times the variable of integration:
∫21du=2u
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−2u2)du=−2∫u2du
-
The integral of un is n+1un+1 when n=−1:
∫u2du=3u3
So, the result is: −6u3
The result is: −6u3+2u
Now substitute u back in:
−6sin3(2x)+2sin(2x)
So, the result is: −96sin3(2x)+32sin(2x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−16cos2(2x))dx=−16∫cos2(2x)dx
-
Rewrite the integrand:
cos2(2x)=2cos(4x)+21
-
Integrate term-by-term:
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(4x)dx=2∫cos(4x)dx
-
Let u=4x.
Then let du=4dx and substitute 4du:
∫16cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫4cos(u)du=4∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 4sin(u)
Now substitute u back in:
4sin(4x)
So, the result is: 8sin(4x)
-
The integral of a constant is the constant times the variable of integration:
∫21dx=2x
The result is: 2x+8sin(4x)
So, the result is: −32x−128sin(4x)
-
The integral of a constant times a function is the constant times the integral of the function:
∫(−32cos(2x))dx=−32∫cos(2x)dx
-
Let u=2x.
Then let du=2dx and substitute 2du:
∫4cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫2cos(u)du=2∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 2sin(u)
Now substitute u back in:
2sin(2x)
So, the result is: −64sin(2x)
-
The integral of a constant is the constant times the variable of integration:
∫321dx=32x
The result is: 2563x−320sin5(2x)−256sin(4x)+2048sin(8x)
-
Add the constant of integration:
2563x−320sin5(2x)−256sin(4x)+2048sin(8x)+constant
The answer is:
2563x−320sin5(2x)−256sin(4x)+2048sin(8x)+constant
The answer (Indefinite)
[src]
/
| 5
| 6 4 sin(4*x) sin (2*x) sin(8*x) 3*x
| sin (x)*cos (x) dx = C - -------- - --------- + -------- + ---
| 256 320 2048 256
/
32482sin(8x)+4x−2sin(4x)+x−10sin5(2x)
The graph
9 3 5 7
3 3*cos(1)*sin(1) sin (1)*cos(1) sin (1)*cos(1) sin (1)*cos(1) 11*sin (1)*cos(1)
--- - --------------- - -------------- - -------------- - -------------- + -----------------
256 256 10 128 160 80
102405sin8−40sin4−32sin52+120
=
9 3 5 7
3 3*cos(1)*sin(1) sin (1)*cos(1) sin (1)*cos(1) sin (1)*cos(1) 11*sin (1)*cos(1)
--- - --------------- - -------------- - -------------- - -------------- + -----------------
256 256 10 128 160 80
−10sin9(1)cos(1)−2563sin(1)cos(1)−128sin3(1)cos(1)−160sin5(1)cos(1)+2563+8011sin7(1)cos(1)
Use the examples entering the upper and lower limits of integration.