Mister Exam

Other calculators

Integral of dx/sqrt((2x+1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |       1        
 |  ----------- dx
 |    _________   
 |  \/ 2*x + 1    
 |                
/                 
0                 
$$\int\limits_{0}^{1} \frac{1}{\sqrt{2 x + 1}}\, dx$$
Integral(1/(sqrt(2*x + 1)), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant is the constant times the variable of integration:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                
 |                                 
 |      1                 _________
 | ----------- dx = C + \/ 2*x + 1 
 |   _________                     
 | \/ 2*x + 1                      
 |                                 
/                                  
$$\int \frac{1}{\sqrt{2 x + 1}}\, dx = C + \sqrt{2 x + 1}$$
The graph
The answer [src]
       ___
-1 + \/ 3 
$$-1 + \sqrt{3}$$
=
=
       ___
-1 + \/ 3 
$$-1 + \sqrt{3}$$
-1 + sqrt(3)
Numerical answer [src]
0.732050807568877
0.732050807568877

    Use the examples entering the upper and lower limits of integration.