1 / | | / 1 \ | |----------- + 2| dx | | ___ | | \1 + \/ 3 *x / | / 0
Integral(1/(1 + sqrt(3)*x) + 2, (x, 0, 1))
Integrate term-by-term:
The integral of a constant is the constant times the variable of integration:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | ___ / ___ \ | / 1 \ \/ 3 *log\1 + \/ 3 *x/ | |----------- + 2| dx = C + 2*x + ---------------------- | | ___ | 3 | \1 + \/ 3 *x / | /
___ / ___\ \/ 3 *log\1 + \/ 3 / 2 + -------------------- 3
=
___ / ___\ \/ 3 *log\1 + \/ 3 / 2 + -------------------- 3
2 + sqrt(3)*log(1 + sqrt(3))/3
Use the examples entering the upper and lower limits of integration.