Mister Exam

Other calculators

Integral of dx/(1+sqrt(3)*x)+2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /     1         \   
 |  |----------- + 2| dx
 |  |      ___      |   
 |  \1 + \/ 3 *x    /   
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(2 + \frac{1}{\sqrt{3} x + 1}\right)\, dx$$
Integral(1/(1 + sqrt(3)*x) + 2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of is .

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                       
 |                                    ___    /      ___  \
 | /     1         \                \/ 3 *log\1 + \/ 3 *x/
 | |----------- + 2| dx = C + 2*x + ----------------------
 | |      ___      |                          3           
 | \1 + \/ 3 *x    /                                      
 |                                                        
/                                                         
$$\int \left(2 + \frac{1}{\sqrt{3} x + 1}\right)\, dx = C + 2 x + \frac{\sqrt{3} \log{\left(\sqrt{3} x + 1 \right)}}{3}$$
The graph
The answer [src]
      ___    /      ___\
    \/ 3 *log\1 + \/ 3 /
2 + --------------------
             3          
$$\frac{\sqrt{3} \log{\left(1 + \sqrt{3} \right)}}{3} + 2$$
=
=
      ___    /      ___\
    \/ 3 *log\1 + \/ 3 /
2 + --------------------
             3          
$$\frac{\sqrt{3} \log{\left(1 + \sqrt{3} \right)}}{3} + 2$$
2 + sqrt(3)*log(1 + sqrt(3))/3
Numerical answer [src]
2.58026735379263
2.58026735379263

    Use the examples entering the upper and lower limits of integration.