Mister Exam

Integral of dx/cos dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |    1      
 |  ------ dx
 |  cos(x)   
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{1}{\cos{\left(x \right)}}\, dx$$
Integral(1/cos(x), (x, 0, 1))
Detail solution
We have the integral:
  /         
 |          
 |   1      
 | ------ dx
 | cos(x)   
 |          
/           
The integrand
  1   
------
cos(x)
Multiply numerator and denominator by
cos(x)
we get
  1       cos(x)
------ = -------
cos(x)      2   
         cos (x)
Because
sin(a)^2 + cos(a)^2 = 1
then
   2             2   
cos (x) = 1 - sin (x)
transform the denominator
 cos(x)      cos(x)  
------- = -----------
   2             2   
cos (x)   1 - sin (x)
do replacement
u = sin(x)
then the integral
  /                
 |                 
 |    cos(x)       
 | ----------- dx  
 |        2       =
 | 1 - sin (x)     
 |                 
/                  
  
  /                
 |                 
 |    cos(x)       
 | ----------- dx  
 |        2       =
 | 1 - sin (x)     
 |                 
/                  
  
Because du = dx*cos(x)
  /         
 |          
 |   1      
 | ------ du
 |      2   
 | 1 - u    
 |          
/           
Rewrite the integrand
           1       1  
         ----- + -----
  1      1 - u   1 + u
------ = -------------
     2         2      
1 - u                 
then
                 /             /          
                |             |           
                |   1         |   1       
                | ----- du    | ----- du  
  /             | 1 + u       | 1 - u     
 |              |             |           
 |   1         /             /           =
 | ------ du = ----------- + -----------  
 |      2           2             2       
 | 1 - u                                  
 |                                        
/                                         
  
= log(1 + u)/2 - log(-1 + u)/2
do backward replacement
u = sin(x)
The answer
  /                                                   
 |                                                    
 |   1         log(1 + sin(x))   log(-1 + sin(x))     
 | ------ dx = --------------- - ---------------- + C0
 | cos(x)             2                 2             
 |                                                    
/                                                     
where C0 is constant, independent of x
The answer (Indefinite) [src]
  /                                                  
 |                                                   
 |   1             log(1 + sin(x))   log(-1 + sin(x))
 | ------ dx = C + --------------- - ----------------
 | cos(x)                 2                 2        
 |                                                   
/                                                    
$$\int \frac{1}{\cos{\left(x \right)}}\, dx = C - \frac{\log{\left(\sin{\left(x \right)} - 1 \right)}}{2} + \frac{\log{\left(\sin{\left(x \right)} + 1 \right)}}{2}$$
The graph
The answer [src]
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
=
=
log(1 + sin(1))   log(1 - sin(1))
--------------- - ---------------
       2                 2       
$$\frac{\log{\left(\sin{\left(1 \right)} + 1 \right)}}{2} - \frac{\log{\left(1 - \sin{\left(1 \right)} \right)}}{2}$$
log(1 + sin(1))/2 - log(1 - sin(1))/2
Numerical answer [src]
1.22619117088352
1.22619117088352
The graph
Integral of dx/cos dx

    Use the examples entering the upper and lower limits of integration.