1 / | | cot(3*x - 2)*1 dx | / 0
Integral(cot(3*x - 1*2)*1, (x, 0, 1))
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
Let .
Then let and substitute :
The integral of is .
Now substitute back in:
So, the result is:
Now substitute back in:
Now simplify:
Add the constant of integration:
The answer is:
/ | log(sin(3*x - 2)) | cot(3*x - 2)*1 dx = C + ----------------- | 3 /
/ 2 \ / 2 \ log(-tan(2)) log\1 + tan (1)/ log(tan(1)) log\1 + tan (2)/ - ------------ - ---------------- + ----------- + ---------------- 3 6 3 6
=
/ 2 \ / 2 \ log(-tan(2)) log\1 + tan (1)/ log(tan(1)) log\1 + tan (2)/ - ------------ - ---------------- + ----------- + ---------------- 3 6 3 6
Use the examples entering the upper and lower limits of integration.