Mister Exam

Integral of ctg(3x-2)dx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                  
  /                  
 |                   
 |  cot(3*x - 2)*1 dx
 |                   
/                    
0                    
$$\int\limits_{0}^{1} \cot{\left(3 x - 2 \right)} 1\, dx$$
Integral(cot(3*x - 1*2)*1, (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Rewrite the integrand:

      2. Let .

        Then let and substitute :

        1. The integral of is .

        Now substitute back in:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                         
 |                         log(sin(3*x - 2))
 | cot(3*x - 2)*1 dx = C + -----------------
 |                                 3        
/                                           
$${{\log \sin \left(3\,x-2\right)}\over{3}}$$
The answer [src]
                    /       2   \                    /       2   \
  log(-tan(2))   log\1 + tan (1)/   log(tan(1))   log\1 + tan (2)/
- ------------ - ---------------- + ----------- + ----------------
       3                6                3               6        
$${{\log \sin 1}\over{3}}-{{\log \sin 2}\over{3}}$$
=
=
                    /       2   \                    /       2   \
  log(-tan(2))   log\1 + tan (1)/   log(tan(1))   log\1 + tan (2)/
- ------------ - ---------------- + ----------- + ----------------
       3                6                3               6        
$$- \frac{\log{\left(- \tan{\left(2 \right)} \right)}}{3} - \frac{\log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{6} + \frac{\log{\left(\tan{\left(1 \right)} \right)}}{3} + \frac{\log{\left(1 + \tan^{2}{\left(2 \right)} \right)}}{6}$$
Numerical answer [src]
-38.9947548058377
-38.9947548058377

    Use the examples entering the upper and lower limits of integration.