Mister Exam

Other calculators

Integral of 1/sqrt(1-x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |          2   
 |  /     2\    
 |  \1 - x /    
 |  --------- dx
 |      t       
 |              
/               
0               
01(1x2)2tdx\int\limits_{0}^{1} \frac{\left(1 - x^{2}\right)^{2}}{t}\, dx
Integral((1 - x^2)^2/t, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    (1x2)2tdx=(1x2)2dxt\int \frac{\left(1 - x^{2}\right)^{2}}{t}\, dx = \frac{\int \left(1 - x^{2}\right)^{2}\, dx}{t}

    1. Rewrite the integrand:

      (1x2)2=x42x2+1\left(1 - x^{2}\right)^{2} = x^{4} - 2 x^{2} + 1

    2. Integrate term-by-term:

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        x4dx=x55\int x^{4}\, dx = \frac{x^{5}}{5}

      1. The integral of a constant times a function is the constant times the integral of the function:

        (2x2)dx=2x2dx\int \left(- 2 x^{2}\right)\, dx = - 2 \int x^{2}\, dx

        1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

          x2dx=x33\int x^{2}\, dx = \frac{x^{3}}{3}

        So, the result is: 2x33- \frac{2 x^{3}}{3}

      1. The integral of a constant is the constant times the variable of integration:

        1dx=x\int 1\, dx = x

      The result is: x552x33+x\frac{x^{5}}{5} - \frac{2 x^{3}}{3} + x

    So, the result is: x552x33+xt\frac{\frac{x^{5}}{5} - \frac{2 x^{3}}{3} + x}{t}

  2. Now simplify:

    x(3x410x2+15)15t\frac{x \left(3 x^{4} - 10 x^{2} + 15\right)}{15 t}

  3. Add the constant of integration:

    x(3x410x2+15)15t+constant\frac{x \left(3 x^{4} - 10 x^{2} + 15\right)}{15 t}+ \mathrm{constant}


The answer is:

x(3x410x2+15)15t+constant\frac{x \left(3 x^{4} - 10 x^{2} + 15\right)}{15 t}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                
 |                           3    5
 |         2              2*x    x 
 | /     2\           x - ---- + --
 | \1 - x /                3     5 
 | --------- dx = C + -------------
 |     t                    t      
 |                                 
/                                  
(1x2)2tdx=C+x552x33+xt\int \frac{\left(1 - x^{2}\right)^{2}}{t}\, dx = C + \frac{\frac{x^{5}}{5} - \frac{2 x^{3}}{3} + x}{t}
The answer [src]
 8  
----
15*t
815t\frac{8}{15 t}
=
=
 8  
----
15*t
815t\frac{8}{15 t}
8/(15*t)

    Use the examples entering the upper and lower limits of integration.