Mister Exam

Other calculators


5x+3/3x-2

Integral of 5x+3/3x-2 dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |  (5*x + 1*x - 2) dx
 |                    
/                     
0                     
01(1x+5x2)dx\int\limits_{0}^{1} \left(1 x + 5 x - 2\right)\, dx
Integral(5*x + 1*x - 1*2, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. Don't know the steps in finding this integral.

      But the integral is

      x22\frac{x^{2}}{2}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5xdx=5xdx\int 5 x\, dx = 5 \int x\, dx

      1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

        xdx=x22\int x\, dx = \frac{x^{2}}{2}

      So, the result is: 5x22\frac{5 x^{2}}{2}

    1. The integral of a constant is the constant times the variable of integration:

      ((1)2)dx=2x\int \left(\left(-1\right) 2\right)\, dx = - 2 x

    The result is: 3x22x3 x^{2} - 2 x

  2. Now simplify:

    x(3x2)x \left(3 x - 2\right)

  3. Add the constant of integration:

    x(3x2)+constantx \left(3 x - 2\right)+ \mathrm{constant}


The answer is:

x(3x2)+constantx \left(3 x - 2\right)+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                   
 |                                   2
 | (5*x + 1*x - 2) dx = C - 2*x + 3*x 
 |                                    
/                                     
(1x+5x2)dx=C+3x22x\int \left(1 x + 5 x - 2\right)\, dx = C + 3 x^{2} - 2 x
The graph
0.001.000.100.200.300.400.500.600.700.800.905-5
The answer [src]
1
11
=
=
1
11
Numerical answer [src]
1.0
1.0
The graph
Integral of 5x+3/3x-2 dx

    Use the examples entering the upper and lower limits of integration.