Mister Exam

Other calculators

Integral of cox^4(5*x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |     4          
 |  cos (x)*5*x dx
 |                
/                 
0                 
$$\int\limits_{0}^{1} 5 x \cos^{4}{\left(x \right)}\, dx$$
Integral(cos(x)^4*(5*x), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                                                                                                                
 |                            4            4          2    4          2    4              3                 2    2       2              3          
 |    4                 15*sin (x)   25*cos (x)   15*x *cos (x)   15*x *sin (x)   15*x*sin (x)*cos(x)   15*x *cos (x)*sin (x)   25*x*cos (x)*sin(x)
 | cos (x)*5*x dx = C - ---------- + ---------- + ------------- + ------------- + ------------------- + --------------------- + -------------------
 |                          32           32             16              16                 8                      8                      8         
/                                                                                                                                                  
$$\int 5 x \cos^{4}{\left(x \right)}\, dx = C + \frac{15 x^{2} \sin^{4}{\left(x \right)}}{16} + \frac{15 x^{2} \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{8} + \frac{15 x^{2} \cos^{4}{\left(x \right)}}{16} + \frac{15 x \sin^{3}{\left(x \right)} \cos{\left(x \right)}}{8} + \frac{25 x \sin{\left(x \right)} \cos^{3}{\left(x \right)}}{8} - \frac{15 \sin^{4}{\left(x \right)}}{32} + \frac{25 \cos^{4}{\left(x \right)}}{32}$$
The graph
The answer [src]
             4            4            2       2            3                   3          
  25   15*sin (1)   55*cos (1)   15*cos (1)*sin (1)   15*sin (1)*cos(1)   25*cos (1)*sin(1)
- -- + ---------- + ---------- + ------------------ + ----------------- + -----------------
  32       32           32               8                    8                   8        
$$- \frac{25}{32} + \frac{55 \cos^{4}{\left(1 \right)}}{32} + \frac{15 \sin^{4}{\left(1 \right)}}{32} + \frac{15 \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)}}{8} + \frac{25 \sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{8} + \frac{15 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{8}$$
=
=
             4            4            2       2            3                   3          
  25   15*sin (1)   55*cos (1)   15*cos (1)*sin (1)   15*sin (1)*cos(1)   25*cos (1)*sin(1)
- -- + ---------- + ---------- + ------------------ + ----------------- + -----------------
  32       32           32               8                    8                   8        
$$- \frac{25}{32} + \frac{55 \cos^{4}{\left(1 \right)}}{32} + \frac{15 \sin^{4}{\left(1 \right)}}{32} + \frac{15 \sin^{2}{\left(1 \right)} \cos^{2}{\left(1 \right)}}{8} + \frac{25 \sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{8} + \frac{15 \sin^{3}{\left(1 \right)} \cos{\left(1 \right)}}{8}$$
-25/32 + 15*sin(1)^4/32 + 55*cos(1)^4/32 + 15*cos(1)^2*sin(1)^2/8 + 15*sin(1)^3*cos(1)/8 + 25*cos(1)^3*sin(1)/8
Numerical answer [src]
1.00618416685829
1.00618416685829

    Use the examples entering the upper and lower limits of integration.