Mister Exam

Integral of Cos(5x-6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(5*x - 6) dx
 |                 
/                  
0                  
01cos(5x6)dx\int\limits_{0}^{1} \cos{\left(5 x - 6 \right)}\, dx
Integral(cos(5*x - 1*6), (x, 0, 1))
Detail solution
  1. Let u=5x6u = 5 x - 6.

    Then let du=5dxdu = 5 dx and substitute du5\frac{du}{5}:

    cos(u)25du\int \frac{\cos{\left(u \right)}}{25}\, du

    1. The integral of a constant times a function is the constant times the integral of the function:

      cos(u)5du=cos(u)du5\int \frac{\cos{\left(u \right)}}{5}\, du = \frac{\int \cos{\left(u \right)}\, du}{5}

      1. The integral of cosine is sine:

        cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

      So, the result is: sin(u)5\frac{\sin{\left(u \right)}}{5}

    Now substitute uu back in:

    sin(5x6)5\frac{\sin{\left(5 x - 6 \right)}}{5}

  2. Now simplify:

    sin(5x6)5\frac{\sin{\left(5 x - 6 \right)}}{5}

  3. Add the constant of integration:

    sin(5x6)5+constant\frac{\sin{\left(5 x - 6 \right)}}{5}+ \mathrm{constant}


The answer is:

sin(5x6)5+constant\frac{\sin{\left(5 x - 6 \right)}}{5}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                  
 |                       sin(5*x - 6)
 | cos(5*x - 6) dx = C + ------------
 |                            5      
/                                    
sin(5x6)5{{\sin \left(5\,x-6\right)}\over{5}}
The graph
0.001.000.100.200.300.400.500.600.700.800.902-2
The answer [src]
  sin(1)   sin(6)
- ------ + ------
    5        5   
sin6sin15{{\sin 6-\sin 1}\over{5}}
=
=
  sin(1)   sin(6)
- ------ + ------
    5        5   
sin(1)5+sin(6)5- \frac{\sin{\left(1 \right)}}{5} + \frac{\sin{\left(6 \right)}}{5}
Numerical answer [src]
-0.224177296601364
-0.224177296601364
The graph
Integral of Cos(5x-6) dx

    Use the examples entering the upper and lower limits of integration.