Mister Exam

Integral of Cos(5x-6) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                
  /                
 |                 
 |  cos(5*x - 6) dx
 |                 
/                  
0                  
$$\int\limits_{0}^{1} \cos{\left(5 x - 6 \right)}\, dx$$
Integral(cos(5*x - 1*6), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       sin(5*x - 6)
 | cos(5*x - 6) dx = C + ------------
 |                            5      
/                                    
$${{\sin \left(5\,x-6\right)}\over{5}}$$
The graph
The answer [src]
  sin(1)   sin(6)
- ------ + ------
    5        5   
$${{\sin 6-\sin 1}\over{5}}$$
=
=
  sin(1)   sin(6)
- ------ + ------
    5        5   
$$- \frac{\sin{\left(1 \right)}}{5} + \frac{\sin{\left(6 \right)}}{5}$$
Numerical answer [src]
-0.224177296601364
-0.224177296601364
The graph
Integral of Cos(5x-6) dx

    Use the examples entering the upper and lower limits of integration.