Integral of Cos(5x-6) dx
The solution
Detail solution
-
Let u=5x−6.
Then let du=5dx and substitute 5du:
∫25cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(u)du=5∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 5sin(u)
Now substitute u back in:
5sin(5x−6)
-
Now simplify:
5sin(5x−6)
-
Add the constant of integration:
5sin(5x−6)+constant
The answer is:
5sin(5x−6)+constant
The answer (Indefinite)
[src]
/
| sin(5*x - 6)
| cos(5*x - 6) dx = C + ------------
| 5
/
5sin(5x−6)
The graph
sin(1) sin(6)
- ------ + ------
5 5
5sin6−sin1
=
sin(1) sin(6)
- ------ + ------
5 5
−5sin(1)+5sin(6)
Use the examples entering the upper and lower limits of integration.