Mister Exam

Other calculators

Integral of cosz/z(z^2+8) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  0                   
  /                   
 |                    
 |  cos(z) / 2    \   
 |  ------*\z  + 8/ dz
 |    z               
 |                    
/                     
c                     
$$\int\limits_{c}^{0} \frac{\cos{\left(z \right)}}{z} \left(z^{2} + 8\right)\, dz$$
Integral((cos(z)/z)*(z^2 + 8), (z, c, 0))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Rewrite the integrand:

            2. Integrate term-by-term:

              1. Use integration by parts:

                Let and let .

                Then .

                To find :

                1. The integral of cosine is sine:

                Now evaluate the sub-integral.

              2. The integral of sine is negative cosine:

              1. The integral of a constant times a function is the constant times the integral of the function:

                  CiRule(a=1, b=0, context=cos(_u)/_u, symbol=_u)

                So, the result is:

              The result is:

            So, the result is:

          Now substitute back in:

        So, the result is:

      Now substitute back in:

    Method #2

    1. Rewrite the integrand:

    2. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                  CiRule(a=1, b=0, context=cos(_u)/_u, symbol=_u)

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Use integration by parts:

                Let and let .

                Then .

                To find :

                1. The integral of cosine is sine:

                Now evaluate the sub-integral.

              2. The integral of sine is negative cosine:

              So, the result is:

            Now substitute back in:

          The result is:

        So, the result is:

      Now substitute back in:

    Method #3

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Use integration by parts:

        Let and let .

        Then .

        To find :

        1. The integral of cosine is sine:

        Now evaluate the sub-integral.

      2. The integral of sine is negative cosine:

      1. The integral of a constant times a function is the constant times the integral of the function:

          CiRule(a=1, b=0, context=cos(z)/z, symbol=z)

        So, the result is:

      The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                    
 |                                                     
 | cos(z) / 2    \                                     
 | ------*\z  + 8/ dz = C + 8*Ci(z) + z*sin(z) + cos(z)
 |   z                                                 
 |                                                     
/                                                      
$$\int \frac{\cos{\left(z \right)}}{z} \left(z^{2} + 8\right)\, dz = C + z \sin{\left(z \right)} + \cos{\left(z \right)} + 8 \operatorname{Ci}{\left(z \right)}$$
The answer [src]
-oo - cos(c) - 8*Ci(c) - c*sin(c)
$$- c \sin{\left(c \right)} - \cos{\left(c \right)} - 8 \operatorname{Ci}{\left(c \right)} - \infty$$
=
=
-oo - cos(c) - 8*Ci(c) - c*sin(c)
$$- c \sin{\left(c \right)} - \cos{\left(c \right)} - 8 \operatorname{Ci}{\left(c \right)} - \infty$$
-oo - cos(c) - 8*Ci(c) - c*sin(c)

    Use the examples entering the upper and lower limits of integration.