1 / | | log(t) | ------ dt | 1 + t | / 0
Integral(log(t)/(1 + t), (t, 0, 1))
// -polylog(2, 1 + t) + pi*I*log(1 + t) for |1 + t| < 1\
/ || |
| || / 1 \ 1 |
| log(t) || -polylog(2, 1 + t) - pi*I*log|-----| for ------- < 1|
| ------ dt = C + |< \1 + t/ |1 + t| |
| 1 + t || |
| || __0, 2 /1, 1 | \ __2, 0 / 1, 1 | \ |
/ ||-polylog(2, 1 + t) + pi*I*/__ | | 1 + t| - pi*I*/__ | | 1 + t| otherwise |
\\ \_|2, 2 \ 0, 0 | / \_|2, 2 \0, 0 | / /
2 pi - --- + 2*pi*I*log(2) 12
=
2 pi - --- + 2*pi*I*log(2) 12
-pi^2/12 + 2*pi*i*log(2)
Use the examples entering the upper and lower limits of integration.