Integral of sin^2x/cos^3x dx
The solution
The answer (Indefinite)
[src]
/
|
| 2
| sin (x) log(1 + sin(x)) log(-1 + sin(x)) sin(x)
| ------- dx = C - --------------- + ---------------- - --------------
| 3 4 4 2
| cos (x) -2 + 2*sin (x)
|
/
−4log(sinx+1)+4log(sinx−1)−2sin2x−2sinx
The graph
log(1 + sin(1)) log(1 - sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
−4log(sin1+1)+4log(1−sin1)−2sin21−2sin1
=
log(1 + sin(1)) log(1 - sin(1)) sin(1)
- --------------- + --------------- - --------------
4 4 2
-2 + 2*sin (1)
4log(−sin(1)+1)−4log(sin(1)+1)−−2+2sin2(1)sin(1)
Use the examples entering the upper and lower limits of integration.