1 / | | cos(x) | ------------- dx | 2 | 3 - 2*sin (x) | / 0
Integral(cos(x)/(3 - 2*sin(x)^2), (x, 0, 1))
Rewrite the integrand:
The integral of a constant times a function is the constant times the integral of the function:
Don't know the steps in finding this integral.
But the integral is
So, the result is:
Now simplify:
Add the constant of integration:
The answer is:
/ ___ \ / ___ \ / ___ | \/ 6 | ___ |\/ 6 | | \/ 6 *log|- ----- + sin(x)| \/ 6 *log|----- + sin(x)| | cos(x) \ 2 / \ 2 / | ------------- dx = C - --------------------------- + ------------------------- | 2 12 12 | 3 - 2*sin (x) | /
/ / ___ \\ / ___\ / / ___\\ / ___ \
___ | |\/ 6 || ___ |\/ 6 | ___ | |\/ 6 || ___ |\/ 6 |
\/ 6 *|pi*I + log|----- - sin(1)|| \/ 6 *log|-----| \/ 6 *|pi*I + log|-----|| \/ 6 *log|----- + sin(1)|
\ \ 2 // \ 2 / \ \ 2 // \ 2 /
- ---------------------------------- - ---------------- + ------------------------- + -------------------------
12 12 12 12
=
/ / ___ \\ / ___\ / / ___\\ / ___ \
___ | |\/ 6 || ___ |\/ 6 | ___ | |\/ 6 || ___ |\/ 6 |
\/ 6 *|pi*I + log|----- - sin(1)|| \/ 6 *log|-----| \/ 6 *|pi*I + log|-----|| \/ 6 *log|----- + sin(1)|
\ \ 2 // \ 2 / \ \ 2 // \ 2 /
- ---------------------------------- - ---------------- + ------------------------- + -------------------------
12 12 12 12
-sqrt(6)*(pi*i + log(sqrt(6)/2 - sin(1)))/12 - sqrt(6)*log(sqrt(6)/2)/12 + sqrt(6)*(pi*i + log(sqrt(6)/2))/12 + sqrt(6)*log(sqrt(6)/2 + sin(1))/12
Use the examples entering the upper and lower limits of integration.