Mister Exam

Other calculators


cos(2*x+pi/4)

You entered:

cos(2*x+pi/4)

What you mean?

Integral of cos(2*x+pi/4) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                 
  /                 
 |                  
 |     /      pi\   
 |  cos|2*x + --| dx
 |     \      4 /   
 |                  
/                   
2                   
$$\int\limits_{2}^{\pi} \cos{\left(2 x + \frac{\pi}{4} \right)}\, dx$$
Integral(cos(2*x + pi/4), (x, 2, pi))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /      pi\
 |                        sin|2*x + --|
 |    /      pi\             \      4 /
 | cos|2*x + --| dx = C + -------------
 |    \      4 /                2      
 |                                     
/                                      
$$\int \cos{\left(2 x + \frac{\pi}{4} \right)}\, dx = C + \frac{\sin{\left(2 x + \frac{\pi}{4} \right)}}{2}$$
The graph
The answer [src]
     /    pi\        
  sin|4 + --|     ___
     \    4 /   \/ 2 
- ----------- + -----
       2          4  
$$\frac{\sqrt{2}}{4} - \frac{\sin{\left(\frac{\pi}{4} + 4 \right)}}{2}$$
=
=
     /    pi\        
  sin|4 + --|     ___
     \    4 /   \/ 2 
- ----------- + -----
       2          4  
$$\frac{\sqrt{2}}{4} - \frac{\sin{\left(\frac{\pi}{4} + 4 \right)}}{2}$$
Numerical answer [src]
0.852221397214836
0.852221397214836
The graph
Integral of cos(2*x+pi/4) dx

    Use the examples entering the upper and lower limits of integration.