Mister Exam

Other calculators

Integral of x*cos(2x+(pi/4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                   
  /                   
 |                    
 |       /      pi\   
 |  x*cos|2*x + --| dx
 |       \      4 /   
 |                    
/                     
0                     
$$\int\limits_{0}^{1} x \cos{\left(2 x + \frac{\pi}{4} \right)}\, dx$$
Integral(x*cos(2*x + pi/4), (x, 0, 1))
Detail solution
  1. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #2

    1. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    2. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    Method #3

    1. Rewrite the integrand:

    2. Use integration by parts:

      Let and let .

      Then .

      To find :

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      Now evaluate the sub-integral.

    3. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of sine is negative cosine:

          So, the result is:

        Now substitute back in:

      So, the result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                            /      pi\        /      pi\
 |                          cos|2*x + --|   x*sin|2*x + --|
 |      /      pi\             \      4 /        \      4 /
 | x*cos|2*x + --| dx = C + ------------- + ---------------
 |      \      4 /                4                2       
 |                                                         
/                                                          
$$\int x \cos{\left(2 x + \frac{\pi}{4} \right)}\, dx = C + \frac{x \sin{\left(2 x + \frac{\pi}{4} \right)}}{2} + \frac{\cos{\left(2 x + \frac{\pi}{4} \right)}}{4}$$
The graph
The answer [src]
   /    pi\              /    pi\
sin|2 + --|     ___   cos|2 + --|
   \    4 /   \/ 2       \    4 /
----------- - ----- + -----------
     2          8          4     
$$\frac{\cos{\left(\frac{\pi}{4} + 2 \right)}}{4} - \frac{\sqrt{2}}{8} + \frac{\sin{\left(\frac{\pi}{4} + 2 \right)}}{2}$$
=
=
   /    pi\              /    pi\
sin|2 + --|     ___   cos|2 + --|
   \    4 /   \/ 2       \    4 /
----------- - ----- + -----------
     2          8          4     
$$\frac{\cos{\left(\frac{\pi}{4} + 2 \right)}}{4} - \frac{\sqrt{2}}{8} + \frac{\sin{\left(\frac{\pi}{4} + 2 \right)}}{2}$$
sin(2 + pi/4)/2 - sqrt(2)/8 + cos(2 + pi/4)/4
Numerical answer [src]
-0.236729288709518
-0.236729288709518

    Use the examples entering the upper and lower limits of integration.