Mister Exam

Other calculators

Integral of cos^2(2t) dt

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     2        
 |  cos (2*t) dt
 |              
/               
0               
$$\int\limits_{0}^{1} \cos^{2}{\left(2 t \right)}\, dt$$
Integral(cos(2*t)^2, (t, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    1. The integral of a constant is the constant times the variable of integration:

    The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                                
 |    2               t   sin(4*t)
 | cos (2*t) dt = C + - + --------
 |                    2      8    
/                                 
$$\int \cos^{2}{\left(2 t \right)}\, dt = C + \frac{t}{2} + \frac{\sin{\left(4 t \right)}}{8}$$
The graph
The answer [src]
1   cos(2)*sin(2)
- + -------------
2         4      
$$\frac{\sin{\left(2 \right)} \cos{\left(2 \right)}}{4} + \frac{1}{2}$$
=
=
1   cos(2)*sin(2)
- + -------------
2         4      
$$\frac{\sin{\left(2 \right)} \cos{\left(2 \right)}}{4} + \frac{1}{2}$$
1/2 + cos(2)*sin(2)/4
Numerical answer [src]
0.405399688086509
0.405399688086509

    Use the examples entering the upper and lower limits of integration.