Mister Exam

Integral of cos^9x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     9      
 |  cos (x) dx
 |            
/             
0             
$$\int\limits_{0}^{1} \cos^{9}{\left(x \right)}\, dx$$
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of cosine is sine:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. Let .

        Then let and substitute :

        1. The integral of is when :

        Now substitute back in:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of is when :

          Now substitute back in:

        So, the result is:

      1. The integral of cosine is sine:

      The result is:

  3. Now simplify:

  4. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                     
 |                       3           7         9           5            
 |    9             4*sin (x)   4*sin (x)   sin (x)   6*sin (x)         
 | cos (x) dx = C - --------- - --------- + ------- + --------- + sin(x)
 |                      3           7          9          5             
/                                                                       
$${{\sin ^9x}\over{9}}-{{4\,\sin ^7x}\over{7}}+{{6\,\sin ^5x}\over{5 }}-{{4\,\sin ^3x}\over{3}}+\sin x$$
The graph
The answer [src]
       3           7         9           5            
  4*sin (1)   4*sin (1)   sin (1)   6*sin (1)         
- --------- - --------- + ------- + --------- + sin(1)
      3           7          9          5             
$${{35\,\sin ^91-180\,\sin ^71+378\,\sin ^51-420\,\sin ^31+315\,\sin 1}\over{315}}$$
=
=
       3           7         9           5            
  4*sin (1)   4*sin (1)   sin (1)   6*sin (1)         
- --------- - --------- + ------- + --------- + sin(1)
      3           7          9          5             
$$- \frac{4 \sin^{3}{\left(1 \right)}}{3} - \frac{4 \sin^{7}{\left(1 \right)}}{7} + \frac{\sin^{9}{\left(1 \right)}}{9} + \frac{6 \sin^{5}{\left(1 \right)}}{5} + \sin{\left(1 \right)}$$
Numerical answer [src]
0.406105224735144
0.406105224735144
The graph
Integral of cos^9x dx

    Use the examples entering the upper and lower limits of integration.