Integral of sqrt(x^2-6x-7) dx
The solution
Detail solution
SqrtQuadraticRule(a=-7, b=-6, c=1, context=sqrt(x**2 - 6*x - 1*7), symbol=x)
-
Now simplify:
2(x−3)x2−6x−7−8log(2x+2x2−6x−7−6)
-
Add the constant of integration:
2(x−3)x2−6x−7−8log(2x+2x2−6x−7−6)+constant
The answer is:
2(x−3)x2−6x−7−8log(2x+2x2−6x−7−6)+constant
The answer (Indefinite)
[src]
/
|
| ______________ / _______________\ _______________
| / 2 | / 2 | / 2 / 3 x\
| \/ x - 6*x - 7 dx = C - 8*log\-6 + 2*x + 2*\/ -7 + x - 6*x / + \/ -7 + x - 6*x *|- - + -|
| \ 2 2/
/
−8log(2x2−6x−7+2x−6)+2xx2−6x−7−23x2−6x−7
The graph
___
/ ___\ ___ 16*pi*I 3*I*\/ 7
-8*log(8) + 8*log\-6 + 2*I*\/ 7 / - 2*I*\/ 3 - ------- + ---------
3 2
8log(27i−6)−8log(43i−4)+237i−23i
=
___
/ ___\ ___ 16*pi*I 3*I*\/ 7
-8*log(8) + 8*log\-6 + 2*I*\/ 7 / - 2*I*\/ 3 - ------- + ---------
3 2
−8log(8)−316iπ−23i+237i+8log(−6+27i)
(0.0 + 3.10023177852459j)
(0.0 + 3.10023177852459j)
Use the examples entering the upper and lower limits of integration.