Mister Exam

Integral of cos^4xdx dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     4        
 |  cos (x)*1 dx
 |              
/               
0               
$$\int\limits_{0}^{1} \cos^{4}{\left(x \right)} 1\, dx$$
Integral(cos(x)^4*1, (x, 0, 1))
Detail solution
  1. Rewrite the integrand:

  2. There are multiple ways to do this integral.

    Method #1

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

    Method #2

    1. Rewrite the integrand:

    2. Integrate term-by-term:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. Integrate term-by-term:

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. Let .

              Then let and substitute :

              1. The integral of a constant times a function is the constant times the integral of the function:

                1. The integral of cosine is sine:

                So, the result is:

              Now substitute back in:

            So, the result is:

          1. The integral of a constant is the constant times the variable of integration:

          The result is:

        So, the result is:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Let .

          Then let and substitute :

          1. The integral of a constant times a function is the constant times the integral of the function:

            1. The integral of cosine is sine:

            So, the result is:

          Now substitute back in:

        So, the result is:

      1. The integral of a constant is the constant times the variable of integration:

      The result is:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                            
 |                                             
 |    4               sin(2*x)   sin(4*x)   3*x
 | cos (x)*1 dx = C + -------- + -------- + ---
 |                       4          32       8 
/                                              
$${{{{{{\sin \left(4\,x\right)}\over{2}}+2\,x}\over{8}}+{{\sin \left( 2\,x\right)}\over{2}}+{{x}\over{2}}}\over{2}}$$
The graph
The answer [src]
       3                            
3   cos (1)*sin(1)   3*cos(1)*sin(1)
- + -------------- + ---------------
8         4                 8       
$${{\sin 4+8\,\sin 2+12}\over{32}}$$
=
=
       3                            
3   cos (1)*sin(1)   3*cos(1)*sin(1)
- + -------------- + ---------------
8         4                 8       
$$\frac{\sin{\left(1 \right)} \cos^{3}{\left(1 \right)}}{4} + \frac{3 \sin{\left(1 \right)} \cos{\left(1 \right)}}{8} + \frac{3}{8}$$
Numerical answer [src]
0.578674278728048
0.578674278728048
The graph
Integral of cos^4xdx dx

    Use the examples entering the upper and lower limits of integration.