Mister Exam

Other calculators

Integral of -y^3*e^((y^2)/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |        2   
 |       y    
 |       --   
 |    3  2    
 |  -y *E   dy
 |            
/             
0             
$$\int\limits_{0}^{1} e^{\frac{y^{2}}{2}} \left(- y^{3}\right)\, dy$$
Integral((-y^3)*E^(y^2/2), (y, 0, 1))
The answer (Indefinite) [src]
  /                             
 |                              
 |       2                     2
 |      y                     y 
 |      --                    --
 |   3  2           /     2\  2 
 | -y *E   dy = C + \2 - y /*e  
 |                              
/                               
$$\int e^{\frac{y^{2}}{2}} \left(- y^{3}\right)\, dy = C + \left(2 - y^{2}\right) e^{\frac{y^{2}}{2}}$$
The graph
The answer [src]
      1/2
-2 + e   
$$-2 + e^{\frac{1}{2}}$$
=
=
      1/2
-2 + e   
$$-2 + e^{\frac{1}{2}}$$
-2 + exp(1/2)
Numerical answer [src]
-0.351278729299872
-0.351278729299872

    Use the examples entering the upper and lower limits of integration.