Mister Exam

Other calculators

Integral of cos(3*x-pi/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  x                 
  /                 
 |                  
 |     /      pi\   
 |  cos|3*x - --| dx
 |     \      2 /   
 |                  
/                   
0                   
$$\int\limits_{0}^{x} \cos{\left(3 x - \frac{\pi}{2} \right)}\, dx$$
Integral(cos(3*x - pi/2), (x, 0, x))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /      pi\
 |                        sin|3*x - --|
 |    /      pi\             \      2 /
 | cos|3*x - --| dx = C + -------------
 |    \      2 /                3      
 |                                     
/                                      
$$\int \cos{\left(3 x - \frac{\pi}{2} \right)}\, dx = C + \frac{\sin{\left(3 x - \frac{\pi}{2} \right)}}{3}$$
The answer [src]
1   cos(3*x)
- - --------
3      3    
$$\frac{1}{3} - \frac{\cos{\left(3 x \right)}}{3}$$
=
=
1   cos(3*x)
- - --------
3      3    
$$\frac{1}{3} - \frac{\cos{\left(3 x \right)}}{3}$$
1/3 - cos(3*x)/3

    Use the examples entering the upper and lower limits of integration.