Mister Exam

Integral of (cosx)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |    x      
 |           
/            
0            
01cos(x)xdx\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{x}\, dx
Detail solution

    CiRule(a=1, b=0, context=cos(x)/x, symbol=x)

  1. Add the constant of integration:

    Ci(x)+constant\operatorname{Ci}{\left(x \right)}+ \mathrm{constant}


The answer is:

Ci(x)+constant\operatorname{Ci}{\left(x \right)}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                     
 |                      
 | cos(x)               
 | ------ dx = C + Ci(x)
 |   x                  
 |                      
/                       
Γ(0,ix)+Γ(0,ix)2-{{\Gamma\left(0 , i\,x\right)+\Gamma\left(0 , -i\,x\right)}\over{2 }}
The answer [src]
-EulerGamma + Ci(1)
%a{\it \%a}
=
=
-EulerGamma + Ci(1)
γ+Ci(1)- \gamma + \operatorname{Ci}{\left(1 \right)}
Numerical answer [src]
43.8506343919923
43.8506343919923

    Use the examples entering the upper and lower limits of integration.