Mister Exam

Integral of (cosx)/x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1          
  /          
 |           
 |  cos(x)   
 |  ------ dx
 |    x      
 |           
/            
0            
$$\int\limits_{0}^{1} \frac{\cos{\left(x \right)}}{x}\, dx$$
Detail solution

    CiRule(a=1, b=0, context=cos(x)/x, symbol=x)

  1. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                     
 |                      
 | cos(x)               
 | ------ dx = C + Ci(x)
 |   x                  
 |                      
/                       
$$-{{\Gamma\left(0 , i\,x\right)+\Gamma\left(0 , -i\,x\right)}\over{2 }}$$
The answer [src]
-EulerGamma + Ci(1)
$${\it \%a}$$
=
=
-EulerGamma + Ci(1)
$$- \gamma + \operatorname{Ci}{\left(1 \right)}$$
Numerical answer [src]
43.8506343919923
43.8506343919923

    Use the examples entering the upper and lower limits of integration.