Mister Exam

Other calculators


cos(pi*x/2)

Integral of cos(pi*x/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1             
  /             
 |              
 |     /pi*x\   
 |  cos|----| dx
 |     \ 2  /   
 |              
/               
0               
$$\int\limits_{0}^{1} \cos{\left(\frac{\pi x}{2} \right)}\, dx$$
Integral(cos((pi*x)/2), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                        /pi*x\
 |                    2*sin|----|
 |    /pi*x\               \ 2  /
 | cos|----| dx = C + -----------
 |    \ 2  /               pi    
 |                               
/                                
$$\int \cos{\left(\frac{\pi x}{2} \right)}\, dx = C + \frac{2 \sin{\left(\frac{\pi x}{2} \right)}}{\pi}$$
The graph
The answer [src]
2 
--
pi
$$\frac{2}{\pi}$$
=
=
2 
--
pi
$$\frac{2}{\pi}$$
2/pi
Numerical answer [src]
0.636619772367581
0.636619772367581
The graph
Integral of cos(pi*x/2) dx

    Use the examples entering the upper and lower limits of integration.