Mister Exam

Other calculators


1-cos((pi*x)/2)

Integral of 1-cos((pi*x)/2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  4                   
  /                   
 |                    
 |  /       /pi*x\\   
 |  |1 - cos|----|| dx
 |  \       \ 2  //   
 |                    
/                     
0                     
$$\int\limits_{0}^{4} \left(1 - \cos{\left(\frac{\pi x}{2} \right)}\right)\, dx$$
Integral(1 - cos(pi*x/2), (x, 0, 4))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant is the constant times the variable of integration:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  /pi*x\
 |                              2*sin|----|
 | /       /pi*x\\                   \ 2  /
 | |1 - cos|----|| dx = C + x - -----------
 | \       \ 2  //                   pi    
 |                                         
/                                          
$$\int \left(1 - \cos{\left(\frac{\pi x}{2} \right)}\right)\, dx = C + x - \frac{2 \sin{\left(\frac{\pi x}{2} \right)}}{\pi}$$
The graph
The answer [src]
4
$$4$$
=
=
4
$$4$$
Numerical answer [src]
4.0
4.0
The graph
Integral of 1-cos((pi*x)/2) dx

    Use the examples entering the upper and lower limits of integration.