Mister Exam

Other calculators


cos(e^x)

Integral of cos(e^x) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     / x\   
 |  cos\E / dx
 |            
/             
0             
$$\int\limits_{0}^{1} \cos{\left(e^{x} \right)}\, dx$$
Integral(cos(E^x), (x, 0, 1))
Detail solution
  1. Let .

    Then let and substitute :

      CiRule(a=1, b=0, context=cos(_u)/_u, symbol=_u)

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                       
 |                        
 |    / x\            / x\
 | cos\E / dx = C + Ci\E /
 |                        
/                         
$$\int \cos{\left(e^{x} \right)}\, dx = C + \operatorname{Ci}{\left(e^{x} \right)}$$
The graph
The answer [src]
-Ci(1) + Ci(E)
$$- \operatorname{Ci}{\left(1 \right)} + \operatorname{Ci}{\left(e \right)}$$
=
=
-Ci(1) + Ci(E)
$$- \operatorname{Ci}{\left(1 \right)} + \operatorname{Ci}{\left(e \right)}$$
-Ci(1) + Ci(E)
Numerical answer [src]
-0.123445921560588
-0.123445921560588
The graph
Integral of cos(e^x) dx

    Use the examples entering the upper and lower limits of integration.