Detail solution
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of is itself.
The result of the chain rule is:
-
Now simplify:
The answer is:
The first derivative
[src]
$$- e^{x} \sin{\left(e^{x} \right)}$$
The second derivative
[src]
/ / x\ x / x\\ x
-\cos\E /*e + sin\E //*e
$$- \left(e^{x} \cos{\left(e^{x} \right)} + \sin{\left(e^{x} \right)}\right) e^{x}$$
The third derivative
[src]
/ / x\ 2*x / x\ / x\ x\ x
\- sin\E / + e *sin\E / - 3*cos\E /*e /*e
$$\left(e^{2 x} \sin{\left(e^{x} \right)} - 3 e^{x} \cos{\left(e^{x} \right)} - \sin{\left(e^{x} \right)}\right) e^{x}$$