Mister Exam

Other calculators

Integral of 5cos*7x+2^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /              x\   
 |  \5*cos(7*x) + 2 / dx
 |                      
/                       
0                       
01(2x+5cos(7x))dx\int\limits_{0}^{1} \left(2^{x} + 5 \cos{\left(7 x \right)}\right)\, dx
Integral(5*cos(7*x) + 2^x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of an exponential function is itself divided by the natural logarithm of the base.

      2xdx=2xlog(2)\int 2^{x}\, dx = \frac{2^{x}}{\log{\left(2 \right)}}

    1. The integral of a constant times a function is the constant times the integral of the function:

      5cos(7x)dx=5cos(7x)dx\int 5 \cos{\left(7 x \right)}\, dx = 5 \int \cos{\left(7 x \right)}\, dx

      1. Let u=7xu = 7 x.

        Then let du=7dxdu = 7 dx and substitute du7\frac{du}{7}:

        cos(u)7du\int \frac{\cos{\left(u \right)}}{7}\, du

        1. The integral of a constant times a function is the constant times the integral of the function:

          cos(u)du=cos(u)du7\int \cos{\left(u \right)}\, du = \frac{\int \cos{\left(u \right)}\, du}{7}

          1. The integral of cosine is sine:

            cos(u)du=sin(u)\int \cos{\left(u \right)}\, du = \sin{\left(u \right)}

          So, the result is: sin(u)7\frac{\sin{\left(u \right)}}{7}

        Now substitute uu back in:

        sin(7x)7\frac{\sin{\left(7 x \right)}}{7}

      So, the result is: 5sin(7x)7\frac{5 \sin{\left(7 x \right)}}{7}

    The result is: 2xlog(2)+5sin(7x)7\frac{2^{x}}{\log{\left(2 \right)}} + \frac{5 \sin{\left(7 x \right)}}{7}

  2. Now simplify:

    2x+log(32)sin(7x)7log(2)\frac{2^{x} + \frac{\log{\left(32 \right)} \sin{\left(7 x \right)}}{7}}{\log{\left(2 \right)}}

  3. Add the constant of integration:

    2x+log(32)sin(7x)7log(2)+constant\frac{2^{x} + \frac{\log{\left(32 \right)} \sin{\left(7 x \right)}}{7}}{\log{\left(2 \right)}}+ \mathrm{constant}


The answer is:

2x+log(32)sin(7x)7log(2)+constant\frac{2^{x} + \frac{\log{\left(32 \right)} \sin{\left(7 x \right)}}{7}}{\log{\left(2 \right)}}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                                              
 |                                            x  
 | /              x\          5*sin(7*x)     2   
 | \5*cos(7*x) + 2 / dx = C + ---------- + ------
 |                                7        log(2)
/                                                
(2x+5cos(7x))dx=2xlog(2)+C+5sin(7x)7\int \left(2^{x} + 5 \cos{\left(7 x \right)}\right)\, dx = \frac{2^{x}}{\log{\left(2 \right)}} + C + \frac{5 \sin{\left(7 x \right)}}{7}
The graph
0.001.000.100.200.300.400.500.600.700.800.90-1010
The answer [src]
  1      5*sin(7)
------ + --------
log(2)      7    
5sin(7)7+1log(2)\frac{5 \sin{\left(7 \right)}}{7} + \frac{1}{\log{\left(2 \right)}}
=
=
  1      5*sin(7)
------ + --------
log(2)      7    
5sin(7)7+1log(2)\frac{5 \sin{\left(7 \right)}}{7} + \frac{1}{\log{\left(2 \right)}}
1/log(2) + 5*sin(7)/7
Numerical answer [src]
1.91197118283096
1.91197118283096

    Use the examples entering the upper and lower limits of integration.