Mister Exam

Other calculators

Integral of 5cos*7x+2^x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  /              x\   
 |  \5*cos(7*x) + 2 / dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \left(2^{x} + 5 \cos{\left(7 x \right)}\right)\, dx$$
Integral(5*cos(7*x) + 2^x, (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of an exponential function is itself divided by the natural logarithm of the base.

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. Let .

        Then let and substitute :

        1. The integral of a constant times a function is the constant times the integral of the function:

          1. The integral of cosine is sine:

          So, the result is:

        Now substitute back in:

      So, the result is:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                              
 |                                            x  
 | /              x\          5*sin(7*x)     2   
 | \5*cos(7*x) + 2 / dx = C + ---------- + ------
 |                                7        log(2)
/                                                
$$\int \left(2^{x} + 5 \cos{\left(7 x \right)}\right)\, dx = \frac{2^{x}}{\log{\left(2 \right)}} + C + \frac{5 \sin{\left(7 x \right)}}{7}$$
The graph
The answer [src]
  1      5*sin(7)
------ + --------
log(2)      7    
$$\frac{5 \sin{\left(7 \right)}}{7} + \frac{1}{\log{\left(2 \right)}}$$
=
=
  1      5*sin(7)
------ + --------
log(2)      7    
$$\frac{5 \sin{\left(7 \right)}}{7} + \frac{1}{\log{\left(2 \right)}}$$
1/log(2) + 5*sin(7)/7
Numerical answer [src]
1.91197118283096
1.91197118283096

    Use the examples entering the upper and lower limits of integration.