Integral of 5cos*7x+2^x dx
The solution
Detail solution
-
Integrate term-by-term:
-
The integral of an exponential function is itself divided by the natural logarithm of the base.
∫2xdx=log(2)2x
-
The integral of a constant times a function is the constant times the integral of the function:
∫5cos(7x)dx=5∫cos(7x)dx
-
Let u=7x.
Then let du=7dx and substitute 7du:
∫7cos(u)du
-
The integral of a constant times a function is the constant times the integral of the function:
∫cos(u)du=7∫cos(u)du
-
The integral of cosine is sine:
∫cos(u)du=sin(u)
So, the result is: 7sin(u)
Now substitute u back in:
7sin(7x)
So, the result is: 75sin(7x)
The result is: log(2)2x+75sin(7x)
-
Now simplify:
log(2)2x+7log(32)sin(7x)
-
Add the constant of integration:
log(2)2x+7log(32)sin(7x)+constant
The answer is:
log(2)2x+7log(32)sin(7x)+constant
The answer (Indefinite)
[src]
/
| x
| / x\ 5*sin(7*x) 2
| \5*cos(7*x) + 2 / dx = C + ---------- + ------
| 7 log(2)
/
∫(2x+5cos(7x))dx=log(2)2x+C+75sin(7x)
The graph
1 5*sin(7)
------ + --------
log(2) 7
75sin(7)+log(2)1
=
1 5*sin(7)
------ + --------
log(2) 7
75sin(7)+log(2)1
Use the examples entering the upper and lower limits of integration.