Mister Exam

Integral of cos(3x-pi) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  2                 
  /                 
 |                  
 |  cos(3*x - pi) dx
 |                  
/                   
-1                  
$$\int\limits_{-1}^{2} \cos{\left(3 x - \pi \right)}\, dx$$
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                               
 |                        sin(3*x)
 | cos(3*x - pi) dx = C - --------
 |                           3    
/                                 
$${{\sin \left(3\,x-\pi\right)}\over{3}}$$
The graph
The answer [src]
  sin(3)   sin(6)
- ------ - ------
    3        3   
$${{\sin \left(\pi+3\right)}\over{3}}-{{\sin \left(\pi-6\right) }\over{3}}$$
=
=
  sin(3)   sin(6)
- ------ - ------
    3        3   
$$- \frac{\sin{\left(3 \right)}}{3} - \frac{\sin{\left(6 \right)}}{3}$$
Numerical answer [src]
0.0460984967130195
0.0460984967130195
The graph
Integral of cos(3x-pi) dx

    Use the examples entering the upper and lower limits of integration.