Mister Exam

Other calculators


sin^4x/cos^2x

Integral of sin^4x/cos^2x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1           
  /           
 |            
 |     4      
 |  sin (x)   
 |  ------- dx
 |     2      
 |  cos (x)   
 |            
/             
0             
$$\int\limits_{0}^{1} \frac{\sin^{4}{\left(x \right)}}{\cos^{2}{\left(x \right)}}\, dx$$
Integral(sin(x)^4/(cos(x)^2), (x, 0, 1))
The answer (Indefinite) [src]
  /                                                
 |                                                 
 |    4                      3                     
 | sin (x)          3*x   sin (x)   3*cos(x)*sin(x)
 | ------- dx = C - --- + ------- + ---------------
 |    2              2     cos(x)          2       
 | cos (x)                                         
 |                                                 
/                                                  
$${{\tan x}\over{2\,\tan ^2x+2}}+\tan x-{{3\,x}\over{2}}$$
The graph
The answer [src]
         3                     
  3   sin (1)   3*cos(1)*sin(1)
- - + ------- + ---------------
  2    cos(1)          2       
$${\it \%a}$$
=
=
         3                     
  3   sin (1)   3*cos(1)*sin(1)
- - + ------- + ---------------
  2    cos(1)          2       
$$- \frac{3}{2} + \frac{3 \sin{\left(1 \right)} \cos{\left(1 \right)}}{2} + \frac{\sin^{3}{\left(1 \right)}}{\cos{\left(1 \right)}}$$
Numerical answer [src]
0.284732081361323
0.284732081361323
The graph
Integral of sin^4x/cos^2x dx

    Use the examples entering the upper and lower limits of integration.