Mister Exam

Other calculators


cos(2x+(pi)/(4))

Integral of cos(2x+(pi)/(4)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 pi                 
 --                 
 2                  
  /                 
 |                  
 |     /      pi\   
 |  cos|2*x + --| dx
 |     \      4 /   
 |                  
/                   
pi                  
$$\int\limits_{\pi}^{\frac{\pi}{2}} \cos{\left(2 x + \frac{\pi}{4} \right)}\, dx$$
Integral(cos(2*x + pi/4), (x, pi, pi/2))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                          /      pi\
 |                        sin|2*x + --|
 |    /      pi\             \      4 /
 | cos|2*x + --| dx = C + -------------
 |    \      4 /                2      
 |                                     
/                                      
$${{\sin \left(2\,x+{{\pi}\over{4}}\right)}\over{2}}$$
The graph
The answer [src]
   ___ 
-\/ 2  
-------
   2   
$${{\sin \left({{5\,\pi}\over{4}}\right)}\over{2}}-{{\sin \left({{9\, \pi}\over{4}}\right)}\over{2}}$$
=
=
   ___ 
-\/ 2  
-------
   2   
$$- \frac{\sqrt{2}}{2}$$
Numerical answer [src]
-0.707106781186547
-0.707106781186547
The graph
Integral of cos(2x+(pi)/(4)) dx

    Use the examples entering the upper and lower limits of integration.