Mister Exam

Other calculators

Integral of cos(2x−5) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 52                
 --                
 19                
  /                
 |                 
 |  cos(2*x - 5) dx
 |                 
/                  
103                
---                
 38                
$$\int\limits_{\frac{103}{38}}^{\frac{52}{19}} \cos{\left(2 x - 5 \right)}\, dx$$
Integral(cos(2*x - 5), (x, 103/38, 52/19))
Detail solution
  1. Let .

    Then let and substitute :

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of cosine is sine:

      So, the result is:

    Now substitute back in:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                  
 |                       sin(2*x - 5)
 | cos(2*x - 5) dx = C + ------------
 |                            2      
/                                    
$$\int \cos{\left(2 x - 5 \right)}\, dx = C + \frac{\sin{\left(2 x - 5 \right)}}{2}$$
The graph
The answer [src]
sin(9/19)   sin(8/19)
--------- - ---------
    2           2    
$$- \frac{\sin{\left(\frac{8}{19} \right)}}{2} + \frac{\sin{\left(\frac{9}{19} \right)}}{2}$$
=
=
sin(9/19)   sin(8/19)
--------- - ---------
    2           2    
$$- \frac{\sin{\left(\frac{8}{19} \right)}}{2} + \frac{\sin{\left(\frac{9}{19} \right)}}{2}$$
sin(9/19)/2 - sin(8/19)/2
Numerical answer [src]
0.0237232781950296
0.0237232781950296

    Use the examples entering the upper and lower limits of integration.