Mister Exam

Integral of sin5xcos7x dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                     
  /                     
 |                      
 |  sin(5*x)*cos(7*x) dx
 |                      
/                       
0                       
$$\int\limits_{0}^{1} \sin{\left(5 x \right)} \cos{\left(7 x \right)}\, dx$$
Integral(sin(5*x)*cos(7*x), (x, 0, 1))
The graph
The answer [src]
  5    5*cos(5)*cos(7)   7*sin(5)*sin(7)
- -- + --------------- + ---------------
  24          24                24      
$$- \frac{5}{24} + \frac{7 \sin{\left(5 \right)} \sin{\left(7 \right)}}{24} + \frac{5 \cos{\left(5 \right)} \cos{\left(7 \right)}}{24}$$
=
=
  5    5*cos(5)*cos(7)   7*sin(5)*sin(7)
- -- + --------------- + ---------------
  24          24                24      
$$- \frac{5}{24} + \frac{7 \sin{\left(5 \right)} \sin{\left(7 \right)}}{24} + \frac{5 \cos{\left(5 \right)} \cos{\left(7 \right)}}{24}$$
-5/24 + 5*cos(5)*cos(7)/24 + 7*sin(5)*sin(7)/24
Numerical answer [src]
-0.347530624083973
-0.347530624083973
The graph
Integral of sin5xcos7x dx

    Use the examples entering the upper and lower limits of integration.