Mister Exam

Other calculators

Integral of (cos20x-20sinx) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                           
  /                           
 |                            
 |  (cos(20*x) - 20*sin(x)) dx
 |                            
/                             
0                             
$$\int\limits_{0}^{1} \left(- 20 \sin{\left(x \right)} + \cos{\left(20 x \right)}\right)\, dx$$
Integral(cos(20*x) - 20*sin(x), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of sine is negative cosine:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. The integral of cosine is sine:

        So, the result is:

      Now substitute back in:

    The result is:

  2. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                      
 |                                              sin(20*x)
 | (cos(20*x) - 20*sin(x)) dx = C + 20*cos(x) + ---------
 |                                                  20   
/                                                        
$$\int \left(- 20 \sin{\left(x \right)} + \cos{\left(20 x \right)}\right)\, dx = C + \frac{\sin{\left(20 x \right)}}{20} + 20 \cos{\left(x \right)}$$
The graph
The answer [src]
                  sin(20)
-20 + 20*cos(1) + -------
                     20  
$$-20 + \frac{\sin{\left(20 \right)}}{20} + 20 \cos{\left(1 \right)}$$
=
=
                  sin(20)
-20 + 20*cos(1) + -------
                     20  
$$-20 + \frac{\sin{\left(20 \right)}}{20} + 20 \cos{\left(1 \right)}$$
-20 + 20*cos(1) + sin(20)/20
Numerical answer [src]
-9.14830662010082
-9.14830662010082

    Use the examples entering the upper and lower limits of integration.