1 / | | (cos(20*x) - 20*sin(x)) dx | / 0
Integral(cos(20*x) - 20*sin(x), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of sine is negative cosine:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of cosine is sine:
So, the result is:
Now substitute back in:
The result is:
Add the constant of integration:
The answer is:
/ | sin(20*x) | (cos(20*x) - 20*sin(x)) dx = C + 20*cos(x) + --------- | 20 /
sin(20)
-20 + 20*cos(1) + -------
20
=
sin(20)
-20 + 20*cos(1) + -------
20
-20 + 20*cos(1) + sin(20)/20
Use the examples entering the upper and lower limits of integration.