Mister Exam

Other calculators


(ch3x-4tg(5x-1))

Integral of (ch3x-4tg(5x-1)) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1                                
  /                                
 |                                 
 |  (cosh(3*x) - 4*tan(5*x - 1)) dx
 |                                 
/                                  
0                                  
$$\int\limits_{0}^{1} \left(- 4 \tan{\left(5 x - 1 \right)} + \cosh{\left(3 x \right)}\right)\, dx$$
Integral(cosh(3*x) - 4*tan(5*x - 1*1), (x, 0, 1))
Detail solution
  1. Integrate term-by-term:

    1. The integral of a constant times a function is the constant times the integral of the function:

      1. The integral of a constant times a function is the constant times the integral of the function:

        1. Rewrite the integrand:

        2. There are multiple ways to do this integral.

          Method #1

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. The integral of is .

              So, the result is:

            Now substitute back in:

          Method #2

          1. Let .

            Then let and substitute :

            1. The integral of a constant times a function is the constant times the integral of the function:

              1. Let .

                Then let and substitute :

                1. The integral of a constant times a function is the constant times the integral of the function:

                  1. The integral of is .

                  So, the result is:

                Now substitute back in:

              So, the result is:

            Now substitute back in:

        So, the result is:

      So, the result is:

    1. Let .

      Then let and substitute :

      1. The integral of a constant times a function is the constant times the integral of the function:

          HyperbolicRule(func='cosh', arg=_u, context=cosh(_u), symbol=_u)

        So, the result is:

      Now substitute back in:

    The result is:

  2. Now simplify:

  3. Add the constant of integration:


The answer is:

The answer (Indefinite) [src]
  /                                                                     
 |                                       sinh(3*x)   4*log(cos(5*x - 1))
 | (cosh(3*x) - 4*tan(5*x - 1)) dx = C + --------- + -------------------
 |                                           3                5         
/                                                                       
$$\int \left(- 4 \tan{\left(5 x - 1 \right)} + \cosh{\left(3 x \right)}\right)\, dx = C + \frac{4 \log{\left(\cos{\left(5 x - 1 \right)} \right)}}{5} + \frac{\sinh{\left(3 x \right)}}{3}$$
The graph
The answer [src]
       /       2   \                  /       2   \
  2*log\1 + tan (4)/   sinh(3)   2*log\1 + tan (1)/
- ------------------ + ------- + ------------------
          5               3              5         
$$- \frac{2 \log{\left(1 + \tan^{2}{\left(4 \right)} \right)}}{5} + \frac{2 \log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{5} + \frac{\sinh{\left(3 \right)}}{3}$$
=
=
       /       2   \                  /       2   \
  2*log\1 + tan (4)/   sinh(3)   2*log\1 + tan (1)/
- ------------------ + ------- + ------------------
          5               3              5         
$$- \frac{2 \log{\left(1 + \tan^{2}{\left(4 \right)} \right)}}{5} + \frac{2 \log{\left(1 + \tan^{2}{\left(1 \right)} \right)}}{5} + \frac{\sinh{\left(3 \right)}}{3}$$
Numerical answer [src]
-1.28967953151425
-1.28967953151425
The graph
Integral of (ch3x-4tg(5x-1)) dx

    Use the examples entering the upper and lower limits of integration.