1 / | | (cosh(3*x) - 4*tan(5*x - 1)) dx | / 0
Integral(cosh(3*x) - 4*tan(5*x - 1*1), (x, 0, 1))
Integrate term-by-term:
The integral of a constant times a function is the constant times the integral of the function:
The integral of a constant times a function is the constant times the integral of the function:
Rewrite the integrand:
There are multiple ways to do this integral.
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
The integral of is .
So, the result is:
Now substitute back in:
So, the result is:
Now substitute back in:
So, the result is:
So, the result is:
Let .
Then let and substitute :
The integral of a constant times a function is the constant times the integral of the function:
HyperbolicRule(func='cosh', arg=_u, context=cosh(_u), symbol=_u)
So, the result is:
Now substitute back in:
The result is:
Now simplify:
Add the constant of integration:
The answer is:
/ | sinh(3*x) 4*log(cos(5*x - 1)) | (cosh(3*x) - 4*tan(5*x - 1)) dx = C + --------- + ------------------- | 3 5 /
/ 2 \ / 2 \ 2*log\1 + tan (4)/ sinh(3) 2*log\1 + tan (1)/ - ------------------ + ------- + ------------------ 5 3 5
=
/ 2 \ / 2 \ 2*log\1 + tan (4)/ sinh(3) 2*log\1 + tan (1)/ - ------------------ + ------- + ------------------ 5 3 5
Use the examples entering the upper and lower limits of integration.