Mister Exam

Other calculators


x*(-2)/(1+x^2)

Integral of x*(-2)/(1+x^2) dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1               
  /               
 |                
 |         1      
 |  x*-2*------ dx
 |            2   
 |       1 + x    
 |                
/                 
0                 
$$\int\limits_{0}^{1} x \left(-2\right) \frac{1}{x^{2} + 1}\, dx$$
Integral(x*(-2)/(1 + x^2), (x, 0, 1))
Detail solution
We have the integral:
  /                
 |                 
 |          1      
 | 1*x*-2*------ dx
 |             2   
 |        1 + x    
 |                 
/                  
Rewrite the integrand
                                      /0\     
                                      |-|     
       1          1*2*x + 0           \1/     
x*-2*------ = - -------------- + -------------
          2        2                     2    
     1 + x      1*x  + 0*x + 1   (-x + 0)  + 1
or
  /                  
 |                   
 |          1        
 | 1*x*-2*------ dx  
 |             2    =
 |        1 + x      
 |                   
/                    
  
   /                 
  |                  
  |   1*2*x + 0      
- | -------------- dx
  |    2             
  | 1*x  + 0*x + 1   
  |                  
 /                   
In the integral
   /                 
  |                  
  |   1*2*x + 0      
- | -------------- dx
  |    2             
  | 1*x  + 0*x + 1   
  |                  
 /                   
do replacement
     2
u = x 
then
the integral =
   /                      
  |                       
  |   1                   
- | ----- du = -log(1 + u)
  | 1 + u                 
  |                       
 /                        
do backward replacement
   /                                
  |                                 
  |   1*2*x + 0             /     2\
- | -------------- dx = -log\1 + x /
  |    2                            
  | 1*x  + 0*x + 1                  
  |                                 
 /                                  
In the integral
0
do replacement
v = -x
then
the integral =
0 = 0
do backward replacement
0 = 0
Solution is:
       /     2\
C - log\1 + x /
The answer (Indefinite) [src]
  /                                
 |                                 
 |        1                /     2\
 | x*-2*------ dx = C - log\1 + x /
 |           2                     
 |      1 + x                      
 |                                 
/                                  
$$-\log \left(x^2+1\right)$$
The graph
The answer [src]
-log(2)
$$-\log 2$$
=
=
-log(2)
$$- \log{\left(2 \right)}$$
Numerical answer [src]
-0.693147180559945
-0.693147180559945
The graph
Integral of x*(-2)/(1+x^2) dx

    Use the examples entering the upper and lower limits of integration.