Mister Exam

Integral of ax dx

Limits of integration:

from to
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1       
  /       
 |        
 |  a*x dx
 |        
/         
0         
01axdx\int\limits_{0}^{1} a x\, dx
Integral(a*x, (x, 0, 1))
Detail solution
  1. The integral of a constant times a function is the constant times the integral of the function:

    axdx=axdx\int a x\, dx = a \int x\, dx

    1. The integral of xnx^{n} is xn+1n+1\frac{x^{n + 1}}{n + 1} when n1n \neq -1:

      xdx=x22\int x\, dx = \frac{x^{2}}{2}

    So, the result is: ax22\frac{a x^{2}}{2}

  2. Add the constant of integration:

    ax22+constant\frac{a x^{2}}{2}+ \mathrm{constant}


The answer is:

ax22+constant\frac{a x^{2}}{2}+ \mathrm{constant}

The answer (Indefinite) [src]
  /                2
 |              a*x 
 | a*x dx = C + ----
 |               2  
/                   
axdx=C+ax22\int a x\, dx = C + \frac{a x^{2}}{2}
The answer [src]
a
-
2
a2\frac{a}{2}
=
=
a
-
2
a2\frac{a}{2}
a/2

    Use the examples entering the upper and lower limits of integration.