Mister Exam

ax canonical form

The teacher will be very surprised to see your correct solution 😉

v

The graph:

x: [, ]
y: [, ]
z: [, ]

Quality:

 (Number of points on the axis)

Plot type:

The solution

You have entered [src]
a*x = 0
ax=0a x = 0
a*x = 0
Detail solution
Given line equation of 2-order:
ax=0a x = 0
This equation looks like:
a2a22+2aa12x+2aa23+a11x2+2a13x+a33=0a^{2} a_{22} + 2 a a_{12} x + 2 a a_{23} + a_{11} x^{2} + 2 a_{13} x + a_{33} = 0
where
a11=0a_{11} = 0
a12=12a_{12} = \frac{1}{2}
a13=0a_{13} = 0
a22=0a_{22} = 0
a23=0a_{23} = 0
a33=0a_{33} = 0
To calculate the determinant
Δ=a11a12a12a22\Delta = \left|\begin{matrix}a_{11} & a_{12}\\a_{12} & a_{22}\end{matrix}\right|
or, substitute
Δ=012120\Delta = \left|\begin{matrix}0 & \frac{1}{2}\\\frac{1}{2} & 0\end{matrix}\right|
Δ=14\Delta = - \frac{1}{4}
Because
Δ\Delta
is not equal to 0, then
find the center of the canonical coordinate system. To do it, solve the system of equations
a0a12+a11x0+a13=0a_{0} a_{12} + a_{11} x_{0} + a_{13} = 0
a0a22+a12x0+a23=0a_{0} a_{22} + a_{12} x_{0} + a_{23} = 0
substitute coefficients
a02=0\frac{a_{0}}{2} = 0
x02=0\frac{x_{0}}{2} = 0
then
x0=0x_{0} = 0
a0=0a_{0} = 0
Thus, we have the equation in the coordinate system O'x'y'
a2a22+2aa12x+a33+a11x2=0a'^{2} a_{22} + 2 a' a_{12} x' + a'_{33} + a_{11} x'^{2} = 0
where
a33=a0a23+a13x0+a33a'_{33} = a_{0} a_{23} + a_{13} x_{0} + a_{33}
or
a33=0a'_{33} = 0
a33=0a'_{33} = 0
then equation turns into
ax=0a' x' = 0
Rotate the resulting coordinate system by an angle φ
x=a~sin(ϕ)+x~cos(ϕ)x' = - \tilde a \sin{\left(\phi \right)} + \tilde x \cos{\left(\phi \right)}
a=a~cos(ϕ)+x~sin(ϕ)a' = \tilde a \cos{\left(\phi \right)} + \tilde x \sin{\left(\phi \right)}
φ - determined from the formula
cot(2ϕ)=a11a222a12\cot{\left(2 \phi \right)} = \frac{a_{11} - a_{22}}{2 a_{12}}
substitute coefficients
cot(2ϕ)=0\cot{\left(2 \phi \right)} = 0
then
ϕ=π4\phi = \frac{\pi}{4}
sin(2ϕ)=1\sin{\left(2 \phi \right)} = 1
cos(2ϕ)=0\cos{\left(2 \phi \right)} = 0
cos(ϕ)=cos(2ϕ)2+12\cos{\left(\phi \right)} = \sqrt{\frac{\cos{\left(2 \phi \right)}}{2} + \frac{1}{2}}
sin(ϕ)=1cos2(ϕ)\sin{\left(\phi \right)} = \sqrt{1 - \cos^{2}{\left(\phi \right)}}
cos(ϕ)=22\cos{\left(\phi \right)} = \frac{\sqrt{2}}{2}
sin(ϕ)=22\sin{\left(\phi \right)} = \frac{\sqrt{2}}{2}
substitute coefficients
x=2a~2+2x~2x' = - \frac{\sqrt{2} \tilde a}{2} + \frac{\sqrt{2} \tilde x}{2}
a=2a~2+2x~2a' = \frac{\sqrt{2} \tilde a}{2} + \frac{\sqrt{2} \tilde x}{2}
then the equation turns from
ax=0a' x' = 0
to
(2a~2+2x~2)(2a~2+2x~2)=0\left(- \frac{\sqrt{2} \tilde a}{2} + \frac{\sqrt{2} \tilde x}{2}\right) \left(\frac{\sqrt{2} \tilde a}{2} + \frac{\sqrt{2} \tilde x}{2}\right) = 0
simplify
a~22+x~22=0- \frac{\tilde a^{2}}{2} + \frac{\tilde x^{2}}{2} = 0
a~22x~22=0\frac{\tilde a^{2}}{2} - \frac{\tilde x^{2}}{2} = 0
Given equation is degenerate hyperbole
a~2(2)2+x~2(2)2=0- \frac{\tilde a^{2}}{\left(\sqrt{2}\right)^{2}} + \frac{\tilde x^{2}}{\left(\sqrt{2}\right)^{2}} = 0
- reduced to canonical form
The center of canonical coordinate system at point O
(0, 0)

Basis of the canonical coordinate system
e1=(22, 22)\vec e_{1} = \left( \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)
e2=(22, 22)\vec e_{2} = \left( - \frac{\sqrt{2}}{2}, \ \frac{\sqrt{2}}{2}\right)
Invariants method
Given line equation of 2-order:
ax=0a x = 0
This equation looks like:
a2a22+2aa12x+2aa23+a11x2+2a13x+a33=0a^{2} a_{22} + 2 a a_{12} x + 2 a a_{23} + a_{11} x^{2} + 2 a_{13} x + a_{33} = 0
where
a11=0a_{11} = 0
a12=12a_{12} = \frac{1}{2}
a13=0a_{13} = 0
a22=0a_{22} = 0
a23=0a_{23} = 0
a33=0a_{33} = 0
The invariants of the equation when converting coordinates are determinants:
I1=a11+a22I_{1} = a_{11} + a_{22}
     |a11  a12|
I2 = |        |
     |a12  a22|

I3=a11a12a13a12a22a23a13a23a33I_{3} = \left|\begin{matrix}a_{11} & a_{12} & a_{13}\\a_{12} & a_{22} & a_{23}\\a_{13} & a_{23} & a_{33}\end{matrix}\right|
I(λ)=a11λa12a12a22λI{\left(\lambda \right)} = \left|\begin{matrix}a_{11} - \lambda & a_{12}\\a_{12} & a_{22} - \lambda\end{matrix}\right|
     |a11  a13|   |a22  a23|
K2 = |        | + |        |
     |a13  a33|   |a23  a33|

substitute coefficients
I1=0I_{1} = 0
     | 0   1/2|
I2 = |        |
     |1/2   0 |

I3=01201200000I_{3} = \left|\begin{matrix}0 & \frac{1}{2} & 0\\\frac{1}{2} & 0 & 0\\0 & 0 & 0\end{matrix}\right|
I(λ)=λ1212λI{\left(\lambda \right)} = \left|\begin{matrix}- \lambda & \frac{1}{2}\\\frac{1}{2} & - \lambda\end{matrix}\right|
     |0  0|   |0  0|
K2 = |    | + |    |
     |0  0|   |0  0|

I1=0I_{1} = 0
I2=14I_{2} = - \frac{1}{4}
I3=0I_{3} = 0
I(λ)=λ214I{\left(\lambda \right)} = \lambda^{2} - \frac{1}{4}
K2=0K_{2} = 0
Because
I3=0I2<0I_{3} = 0 \wedge I_{2} < 0
then by line type:
this equation is of type : degenerate hyperbole
Make the characteristic equation for the line:
I1λ+I2+λ2=0- I_{1} \lambda + I_{2} + \lambda^{2} = 0
or
λ214=0\lambda^{2} - \frac{1}{4} = 0
Solve this equation
λ1=12\lambda_{1} = - \frac{1}{2}
λ2=12\lambda_{2} = \frac{1}{2}
then the canonical form of the equation will be
a~2λ2+x~2λ1+I3I2=0\tilde a^{2} \lambda_{2} + \tilde x^{2} \lambda_{1} + \frac{I_{3}}{I_{2}} = 0
or
a~22x~22=0\frac{\tilde a^{2}}{2} - \frac{\tilde x^{2}}{2} = 0
a~2(2)2+x~2(2)2=0- \frac{\tilde a^{2}}{\left(\sqrt{2}\right)^{2}} + \frac{\tilde x^{2}}{\left(\sqrt{2}\right)^{2}} = 0
- reduced to canonical form
The graph
ax canonical form